Python T5 base model
Pre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node.
How to use
You can use this model to denoise span-masked sequences. Note, that you'll need to add some boilerplate code for adding the noise to your sequences.
First, install the git-t5 pip package:
> pip install git-t5
Add the following code for encoding an input text:
from typing import Dict, Optional, Tuple
import numpy as np
import torch
from transformers import PreTrainedTokenizerBase
from git_t5.data import DataCollatorForT5MLM
def encode(
tokenizer: PreTrainedTokenizerBase,
text: str,
noise_density: float = 0.15,
mean_noise_span_length: float = 3.0,
extra_tokens_per_span_inputs: int = 1,
extra_tokens_per_span_targets: int = 1,
seed: Optional[int] = None,
) -> Tuple[Dict[str, torch.Tensor], int]:
def compute_lengths(tokens_length: int) -> Tuple[int, int]:
num_noise_tokens = int(round(tokens_length * noise_density))
num_nonnoise_tokens = tokens_length - num_noise_tokens
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
# inputs contain all nonnoise tokens, sentinels for all noise spans
# and one EOS token.
return (
num_nonnoise_tokens + num_noise_spans * extra_tokens_per_span_inputs + 1,
num_noise_tokens + num_noise_spans * extra_tokens_per_span_targets + 1,
)
encoding = tokenizer(
text,
truncation=False,
return_attention_mask=False,
return_length=True,
)
input_length = encoding.pop("length")
input_length = input_length[0]
input_length, target_length = compute_lengths(input_length)
np.random.seed(seed)
data_collator = DataCollatorForT5MLM(
tokenizer=tokenizer,
noise_density=noise_density,
mean_noise_span_length=mean_noise_span_length,
input_length=input_length,
target_length=target_length,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
decoder_start_token_id=tokenizer.pad_token_id,
sentinel_token_id=tokenizer.convert_tokens_to_ids("<extra_id_0>"),
)
batch = data_collator([encoding]) # type: ignore
batch = {key: torch.tensor(val) for key, val in batch.items()}
return batch, target_length
Next, download the model and tokenizer:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,
model = AutoModelForSeq2SeqLM.from_pretrained("formermagic/pyt5-base")
tokenizer = AutoTokenizer.from_pretrained("formermagic/pyt5-base")
Finally, encode your input and generate the output sequence:
text = """
def alias(self, annotationtype, set, fallback=False):
if inspect.isclass(annotationtype): annotationtype = annotationtype.ANNOTATIONTYPE
if annotationtype in self.set_alias and set in self.set_alias[annotationtype]:
return self.set_alias[annotationtype][set]
elif fallback:
return set
else:
raise KeyError("No alias for set " + set)
"""
batch, max_length = encode(tokenizer, text, seed=22)
outputs = model.generate(batch["input_ids"], max_length=max_length, num_beams=1)
print(tokenizer.batch_decode(outputs[..., 1:]))
print(tokenizer.batch_decode(batch["labels"]))
You should see the following output:
['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) def fallback']
['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) </s></s>']
As you can see, the predicted result is very close to the target sequence.