tinyCLAP / README.md
fpaissan's picture
Update README.md
f07425a verified
|
raw
history blame
2.07 kB
metadata
license: apache-2.0
tags:
  - contrastive learning
  - CLAP
  - audio classification
  - zero-shot classification

tinyCLAP: Distilling Contrastive Language-Audio Pretrained models

arXiv

This repository contains the official implementation of tinyCLAP.

tinyCLAP overview

Requirements

To install requirements:

pip install -r extra_requirements.txt

Training

To train the model(s) in the paper, run this command:

MODEL_NAME=phinet_alpha_1.50_beta_0.75_t0_6_N_7

./run_tinyCLAP.sh $MODEL_NAME

Note that MODEL_NAME is formatted such that the script will automatically parse the configuration for the student model. You can change parameters by changing the model name.

Please note:

  • To use the original CLAP encoder in the distillation setting, replace the model name with Cnn14;
  • To reproduce the variants of PhiNet from the manuscript, refer to the hyperparameters listed in Table 1.

Evaluation

The command to evaluate the model on each dataset varies slightly among datasets. Below are listed all the necessary commands.

ESC50

python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC

UrbanSound8K

python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K

TUT17

python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17

Pre-trained Models

You can download pretrained models here:

Citing tinyCLAP

@inproceedings{paissan2024tinyclap,
  title={tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models},
  author={Paissan, Francesco and Farella, Elisabetta},
  journal={Interspeech 2024},
  year={2024}
}