tinyCLAP / README.md
fpaissan's picture
Update README.md
f07425a verified
|
raw
history blame
2.07 kB
---
license: apache-2.0
tags:
- contrastive learning
- CLAP
- audio classification
- zero-shot classification
---
# tinyCLAP: Distilling Contrastive Language-Audio Pretrained models
[![arXiv](https://img.shields.io/badge/arXiv-1234.56789-b31b1b.svg)](https://arxiv.org/abs/2311.14517)
This repository contains the official implementation of [tinyCLAP](https://arxiv.org/abs/2311.14517).
![tinyCLAP overview](https://francescopaissan.it/tinyclapweb/assets/overview.png)
## Requirements
To install requirements:
```setup
pip install -r extra_requirements.txt
```
## Training
To train the model(s) in the paper, run this command:
```bash
MODEL_NAME=phinet_alpha_1.50_beta_0.75_t0_6_N_7
./run_tinyCLAP.sh $MODEL_NAME
```
Note that `MODEL_NAME` is formatted such that the script will automatically parse the configuration for the student model.
You can change parameters by changing the model name.
Please note:
- To use the original CLAP encoder in the distillation setting, replace the model name with `Cnn14`;
- To reproduce the variants of PhiNet from the manuscript, refer to the hyperparameters listed in Table 1.
## Evaluation
The command to evaluate the model on each dataset varies slightly among datasets.
Below are listed all the necessary commands.
### ESC50
```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC
```
### UrbanSound8K
```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K
```
### TUT17
```bash
python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
```
## Pre-trained Models
You can download pretrained models here:
- [My awesome model](https://drive.google.com/mymodel.pth) trained on ImageNet using parameters x,y,z.
## Citing tinyCLAP
```
@inproceedings{paissan2024tinyclap,
title={tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models},
author={Paissan, Francesco and Farella, Elisabetta},
journal={Interspeech 2024},
year={2024}
}
```