I run Qwen3-Coder 480B locally on my Z8, with a 1-million token context window. It’s the equivalent of parallel-parking a Nimitz-class carrier in a kiddie pool. Thanks to whatever dark pact the llama.cpp, CUDA, and kernel folks signed, hybrid inferencing + VRAM↔RAM offload let me stream the model’s synapses across Xeon, RAM, and four lonely A6000s without summoning either the OOM killer or a small house fire.
Qwen2.5-Omni is soooo good that people build multimodal reasoning models off of it 🥹 > KE-Team/Ke-Omni-R-3B is open-source audio reasoning model sota on average of benchmarks, based on Qwen/Qwen2.5-Omni-3B 🗣️ > Haoz0206/Omni-R1 is a video reasoning model with pixel level grounding (see below) and it's super competitive ⏯️ based on Qwen/Qwen2.5-Omni-7B
I've got my hands on an AMD Instinct MI100. It's about the same price used as a V100 but on paper has more TOPS (V100 14TOPS vs MI100 23TOPS) also the HBM has faster clock so the memory bandwidth is 1.2TB/s. For quantized inference it's a beast (MI50 was also surprisingly fast)
For LORA training with this quick test I could not make the bnb config works so I'm running the FT on the fill size model.
Will share all the install, setup and setting I've learned in a blog post, together with the cooling shroud 3D design.