File size: 3,151 Bytes
81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 8c2ef04 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af 2351421 81324af a94dc1d 81324af 2351421 81324af 2351421 81324af 2351421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
library_name: transformers
tags:
- sentiment-analysis
- text-classification
- turkish
license: mit
base_model:
- FacebookAI/xlm-roberta-base
---
# π TurkReviewSentiment-RoBERTa: Sentiment Analysis Model for Turkish Texts
π’ **A fine-tuned XLM-RoBERTa model for sentiment analysis in Turkish texts!**
This model can classify user reviews and texts as **positive** or **negative** sentiment.
---
## π **Model Details**
### Model Description
β
**Base Model:** XLM-RoBERTa
β
**Finetuned from:** `xlm-roberta-base`
β
**Training Data:** User reviews from e-commerce platforms
β
**Task:** Sentiment Analysis (Binary Classification: Positive / Negative)
β
**Language:** Turkish
β
**Use Cases:** Customer feedback analysis, social media monitoring, market research
β
**License:** MIT
### Model Sources
- **Repository:** [Hugging Face Model Page](https://huggingface.co/fundaylnci/TurkReviewSentiment-RoBERTa)
---
## π **How to Use the Model**
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
def load_model(model_path):
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
return model, tokenizer
def get_sentiment(text, model, tokenizer):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
return "positive" if predicted_class == 1 else "negative"
model_path = "fundaylnci/TurkReviewSentiment-RoBERTa"
model, tokenizer = load_model(model_path)
text ="Bu ΓΌrΓΌn harika!"
get_sentiment(text,model, tokenizer)
## Training Details
### Training Data
Dataset: E-commerce product reviews + manually labeled sentiment data
#### Preprocessing [optional]
Tokenization with xlm-roberta-base tokenizer
#### Training Hyperparameters
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
)
#### Speeds, Sizes, Times [optional]
Checkpoint Size: ~500MB
Training Time: ~6 hours on NVIDIA T4 GPU
## Evaluation
Evaluation Metrics: Accuracy, F1-score
# Version 149608e489c0979a661489d53245a30a48d3d38e
Accuracy: 0.961
Precision: 0.977
Recall: 0.980
F1 Score: 0.979
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator.
Hardware: NVIDIA T4 GPU
Training Hours: ~6 hours
Cloud Provider: Google Cloud
Estimated CO2 Emitted: ~3.2 kg
## Citation [optional]
**BibTeX:**
@article{turkreviewsentiment2025,
title={TurkReviewSentiment-RoBERTa: Sentiment Analysis for Turkish Reviews},
author={Your Name},
journal={Hugging Face Model Hub},
year={2025}
}
|