BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gK29382231121/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "How is Costco's fiscal year structured?",
    'How many weeks did the fiscal years 2023 and 2022 include?',
    'What is the process for using reinsurers not on the authorized list?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6814
cosine_accuracy@3 0.8129
cosine_accuracy@5 0.85
cosine_accuracy@10 0.9029
cosine_precision@1 0.6814
cosine_precision@3 0.271
cosine_precision@5 0.17
cosine_precision@10 0.0903
cosine_recall@1 0.6814
cosine_recall@3 0.8129
cosine_recall@5 0.85
cosine_recall@10 0.9029
cosine_ndcg@10 0.7917
cosine_mrr@10 0.7563
cosine_map@100 0.761

Information Retrieval

Metric Value
cosine_accuracy@1 0.6843
cosine_accuracy@3 0.8114
cosine_accuracy@5 0.8529
cosine_accuracy@10 0.8986
cosine_precision@1 0.6843
cosine_precision@3 0.2705
cosine_precision@5 0.1706
cosine_precision@10 0.0899
cosine_recall@1 0.6843
cosine_recall@3 0.8114
cosine_recall@5 0.8529
cosine_recall@10 0.8986
cosine_ndcg@10 0.7909
cosine_mrr@10 0.7565
cosine_map@100 0.7616

Information Retrieval

Metric Value
cosine_accuracy@1 0.6786
cosine_accuracy@3 0.8086
cosine_accuracy@5 0.8429
cosine_accuracy@10 0.8943
cosine_precision@1 0.6786
cosine_precision@3 0.2695
cosine_precision@5 0.1686
cosine_precision@10 0.0894
cosine_recall@1 0.6786
cosine_recall@3 0.8086
cosine_recall@5 0.8429
cosine_recall@10 0.8943
cosine_ndcg@10 0.7866
cosine_mrr@10 0.7523
cosine_map@100 0.7572

Information Retrieval

Metric Value
cosine_accuracy@1 0.6714
cosine_accuracy@3 0.7857
cosine_accuracy@5 0.8257
cosine_accuracy@10 0.8814
cosine_precision@1 0.6714
cosine_precision@3 0.2619
cosine_precision@5 0.1651
cosine_precision@10 0.0881
cosine_recall@1 0.6714
cosine_recall@3 0.7857
cosine_recall@5 0.8257
cosine_recall@10 0.8814
cosine_ndcg@10 0.7743
cosine_mrr@10 0.7405
cosine_map@100 0.7457

Information Retrieval

Metric Value
cosine_accuracy@1 0.6371
cosine_accuracy@3 0.7686
cosine_accuracy@5 0.8071
cosine_accuracy@10 0.8614
cosine_precision@1 0.6371
cosine_precision@3 0.2562
cosine_precision@5 0.1614
cosine_precision@10 0.0861
cosine_recall@1 0.6371
cosine_recall@3 0.7686
cosine_recall@5 0.8071
cosine_recall@10 0.8614
cosine_ndcg@10 0.7501
cosine_mrr@10 0.7146
cosine_map@100 0.7199

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 45.34 tokens
    • max: 439 tokens
    • min: 2 tokens
    • mean: 20.47 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    The HP GreenValley edge-to-cloud platform is used for software-defined disaggregated storage services that include HPE GreenLake for Block Storage and HPE GreenLake for File Storage, and it provides unified cloud-based management to simplify how customers manage storage. What are the focus areas for the HP GreenLake platform?
    Net income $
    Deferred tax assets and deferred tax liabilities included in the Consolidated Balance Sheets as follows: As of October 31, 2023: Deferred tax assets were $3,155 million and Deferred tax liabilities were $44 million. As of October 31, 2022: Deferred tax assets were $2,167 million and Deferred tax liabilities were $121 million. The total net deferred tax assets were $3,111 million in 2023 and $2,046 million in 2022. What was the change in HP's net deferred tax assets from 2022 to 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5361 - - - - -
0.9746 12 - 0.7280 0.7414 0.7494 0.6896 0.7470
1.6244 20 0.6833 - - - - -
1.9492 24 - 0.7426 0.7487 0.7573 0.7138 0.7592
2.4365 30 0.4674 - - - - -
2.9239 36 - 0.7452 0.7558 0.7624 0.7190 0.7623
3.2487 40 0.4038 - - - - -
3.8985 48 - 0.7457 0.7572 0.7616 0.7199 0.7610

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
20
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gK29382231121/bge-base-financial-matryoshka

Finetuned
(310)
this model

Evaluation results