metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: What is the title of Item 6 in the text?
sentences:
- What is the title of Item 8 in the document?
- What was the total premiums revenue for the Insurance segment in 2023?
- >-
How much were the net cash flows from investing activities in 2023 and
2022?
- source_sentence: Which markets does Garmin primarily serve?
sentences:
- What types of products are offered in Garmin's Fitness segment?
- In 2023, AbbVie's net revenue in the United States was $41,883 million.
- >-
As of December 31, 2023, the total deferred income tax asset was
$1,157,486.
- source_sentence: What was the effective tax rate in 2023?
sentences:
- What was the effective tax rate for 2023 and how did it compare to 2022?
- What are the various diversity, equity, and inclusion councils at AMC?
- >-
What is the title of the section that discusses legal issues in the
document?
- source_sentence: What begins on page 105 of this report?
sentences:
- >-
Where can one find the details pertaining to Legal Proceedings in the
report?
- What are the technological features of the GeForce RTX 40 Series GPUs?
- >-
Changes in foreign exchange rates reduced cost of sales by $254 million
in 2023.
- source_sentence: How is Costco's fiscal year structured?
sentences:
- How many weeks did the fiscal years 2023 and 2022 include?
- What is the process for using reinsurers not on the authorized list?
- >-
What contributed to the increase in Google Services' operating income in
2023?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6814285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6814285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6814285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7916721734405803
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7562692743764173
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7609992859917654
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6842857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6842857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761905
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6842857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7909210075399126
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.756487528344671
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.761586340523296
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6785714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6785714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2695238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6785714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7866298497982406
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.752303287981859
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7571741668436585
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8257142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8814285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2619047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16514285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08814285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8257142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8814285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7742856481999635
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.740471655328798
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.745692801681558
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6371428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7685714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8071428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8614285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6371428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2561904761904762
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16142857142857142
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08614285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6371428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7685714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8071428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8614285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7500703607138253
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7145918367346937
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7198995734568113
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("gK29382231121/bge-base-financial-matryoshka")
sentences = [
"How is Costco's fiscal year structured?",
'How many weeks did the fiscal years 2023 and 2022 include?',
'What is the process for using reinsurers not on the authorized list?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6814 |
cosine_accuracy@3 |
0.8129 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6814 |
cosine_precision@3 |
0.271 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6814 |
cosine_recall@3 |
0.8129 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7917 |
cosine_mrr@10 |
0.7563 |
cosine_map@100 |
0.761 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6843 |
cosine_accuracy@3 |
0.8114 |
cosine_accuracy@5 |
0.8529 |
cosine_accuracy@10 |
0.8986 |
cosine_precision@1 |
0.6843 |
cosine_precision@3 |
0.2705 |
cosine_precision@5 |
0.1706 |
cosine_precision@10 |
0.0899 |
cosine_recall@1 |
0.6843 |
cosine_recall@3 |
0.8114 |
cosine_recall@5 |
0.8529 |
cosine_recall@10 |
0.8986 |
cosine_ndcg@10 |
0.7909 |
cosine_mrr@10 |
0.7565 |
cosine_map@100 |
0.7616 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.8086 |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.8943 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.2695 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.0894 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.8086 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.8943 |
cosine_ndcg@10 |
0.7866 |
cosine_mrr@10 |
0.7523 |
cosine_map@100 |
0.7572 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6714 |
cosine_accuracy@3 |
0.7857 |
cosine_accuracy@5 |
0.8257 |
cosine_accuracy@10 |
0.8814 |
cosine_precision@1 |
0.6714 |
cosine_precision@3 |
0.2619 |
cosine_precision@5 |
0.1651 |
cosine_precision@10 |
0.0881 |
cosine_recall@1 |
0.6714 |
cosine_recall@3 |
0.7857 |
cosine_recall@5 |
0.8257 |
cosine_recall@10 |
0.8814 |
cosine_ndcg@10 |
0.7743 |
cosine_mrr@10 |
0.7405 |
cosine_map@100 |
0.7457 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6371 |
cosine_accuracy@3 |
0.7686 |
cosine_accuracy@5 |
0.8071 |
cosine_accuracy@10 |
0.8614 |
cosine_precision@1 |
0.6371 |
cosine_precision@3 |
0.2562 |
cosine_precision@5 |
0.1614 |
cosine_precision@10 |
0.0861 |
cosine_recall@1 |
0.6371 |
cosine_recall@3 |
0.7686 |
cosine_recall@5 |
0.8071 |
cosine_recall@10 |
0.8614 |
cosine_ndcg@10 |
0.7501 |
cosine_mrr@10 |
0.7146 |
cosine_map@100 |
0.7199 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 45.34 tokens
- max: 439 tokens
|
- min: 2 tokens
- mean: 20.47 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
The HP GreenValley edge-to-cloud platform is used for software-defined disaggregated storage services that include HPE GreenLake for Block Storage and HPE GreenLake for File Storage, and it provides unified cloud-based management to simplify how customers manage storage. |
What are the focus areas for the HP GreenLake platform? |
Net income |
$ |
Deferred tax assets and deferred tax liabilities included in the Consolidated Balance Sheets as follows: As of October 31, 2023: Deferred tax assets were $3,155 million and Deferred tax liabilities were $44 million. As of October 31, 2022: Deferred tax assets were $2,167 million and Deferred tax liabilities were $121 million. The total net deferred tax assets were $3,111 million in 2023 and $2,046 million in 2022. |
What was the change in HP's net deferred tax assets from 2022 to 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5361 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7280 |
0.7414 |
0.7494 |
0.6896 |
0.7470 |
1.6244 |
20 |
0.6833 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7426 |
0.7487 |
0.7573 |
0.7138 |
0.7592 |
2.4365 |
30 |
0.4674 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7452 |
0.7558 |
0.7624 |
0.7190 |
0.7623 |
3.2487 |
40 |
0.4038 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7457 |
0.7572 |
0.7616 |
0.7199 |
0.7610 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}