File size: 2,104 Bytes
c5ef90c 986f28b 7b63d40 c5ef90c 7b63d40 dc3b3f5 26b21c2 feef391 7b63d40 a925244 7b63d40 c5ef90c 7b63d40 4e81753 c5ef90c 7b63d40 c5ef90c 986f28b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: cc-by-nc-sa-4.0
base_model: ElnaggarLab/ankh-base
tags:
- generated_from_trainer
model-index:
- name: TooT-PLM-P2S
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TooT-PLM-P2S
This model is a fine-tuned version of [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1451
- Q3 Accuracy: 0.7122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Q3 Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|
| 0.2036 | 1.0 | 449 | 0.1943 | 0.5833 |
| 0.1686 | 2.0 | 899 | 0.1864 | 0.5688 |
| 0.1597 | 3.0 | 1349 | 0.1770 | 0.5774 |
| 0.159 | 4.0 | 1799 | 0.1740 | 0.6245 |
| 0.1503 | 5.0 | 2248 | 0.1731 | 0.6851 |
| 0.1479 | 6.0 | 2698 | 0.1670 | 0.5961 |
| 0.1447 | 7.0 | 3148 | 0.1617 | 0.5936 |
| 0.1395 | 8.0 | 3598 | 0.1550 | 0.6307 |
| 0.1298 | 9.0 | 4047 | 0.1481 | 0.5573 |
| 0.1187 | 9.98 | 4490 | 0.1451 | 0.7122 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1
|