resnext50_32x4d / README.md
Francesco's picture
commit files to HF hub
1668309
|
raw
history blame
1.34 kB
# resnext50_32x4d
Implementation of ResNetXt proposed in [\"Aggregated Residual
Transformation for Deep Neural
Networks\"](https://arxiv.org/pdf/1611.05431.pdf)
Create a default model
``` python
ResNetXt.resnext50_32x4d()
ResNetXt.resnext101_32x8d()
# create a resnetxt18_32x4d
ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4)
```
Examples:
: ``` python
# change activation
ResNetXt.resnext50_32x4d(activation = nn.SELU)
# change number of classes (default is 1000 )
ResNetXt.resnext50_32x4d(n_classes=100)
# pass a different block
ResNetXt.resnext50_32x4d(block=SENetBasicBlock)
# change the initial convolution
model = ResNetXt.resnext50_32x4d
model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3)
# store each feature
x = torch.rand((1, 3, 224, 224))
model = ResNetXt.resnext50_32x4d()
# first call .features, this will activate the forward hooks and tells the model you'll like to get the features
model.encoder.features
model(torch.randn((1,3,224,224)))
# get the features from the encoder
features = model.encoder.features
print([x.shape for x in features])
#[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])]
```