HBERTv1_48_L4_H768_A12_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H768_A12 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7904
  • Accuracy: 0.8726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.714 1.0 180 0.7757 0.7826
0.6529 2.0 360 0.6221 0.8328
0.4238 3.0 540 0.5757 0.8544
0.2832 4.0 720 0.5940 0.8544
0.2056 5.0 900 0.6066 0.8495
0.1417 6.0 1080 0.6677 0.8559
0.0983 7.0 1260 0.6791 0.8519
0.0741 8.0 1440 0.7092 0.8495
0.0495 9.0 1620 0.7061 0.8687
0.0356 10.0 1800 0.7682 0.8633
0.0243 11.0 1980 0.7785 0.8623
0.0144 12.0 2160 0.7833 0.8677
0.0099 13.0 2340 0.7941 0.8711
0.0063 14.0 2520 0.7904 0.8726
0.0037 15.0 2700 0.8014 0.8677

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/HBERTv1_48_L4_H768_A12_massive

Finetuned
(2)
this model

Evaluation results