gokuls's picture
End of training
2f46203
metadata
base_model: gokuls/HBERTv1_48_L4_H768_A12
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L4_H768_A12_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8726020659124447

HBERTv1_48_L4_H768_A12_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H768_A12 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7904
  • Accuracy: 0.8726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.714 1.0 180 0.7757 0.7826
0.6529 2.0 360 0.6221 0.8328
0.4238 3.0 540 0.5757 0.8544
0.2832 4.0 720 0.5940 0.8544
0.2056 5.0 900 0.6066 0.8495
0.1417 6.0 1080 0.6677 0.8559
0.0983 7.0 1260 0.6791 0.8519
0.0741 8.0 1440 0.7092 0.8495
0.0495 9.0 1620 0.7061 0.8687
0.0356 10.0 1800 0.7682 0.8633
0.0243 11.0 1980 0.7785 0.8623
0.0144 12.0 2160 0.7833 0.8677
0.0099 13.0 2340 0.7941 0.8711
0.0063 14.0 2520 0.7904 0.8726
0.0037 15.0 2700 0.8014 0.8677

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0