|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: hBERTv1_new_pretrain_48_emb_com_qqp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE QQP |
|
type: glue |
|
config: qqp |
|
split: validation |
|
args: qqp |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.789463269849122 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7288135593220338 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_new_pretrain_48_emb_com_qqp |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48) on the GLUE QQP dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4383 |
|
- Accuracy: 0.7895 |
|
- F1: 0.7288 |
|
- Combined Score: 0.7591 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.5492 | 1.0 | 2843 | 0.5130 | 0.7537 | 0.6393 | 0.6965 | |
|
| 0.4928 | 2.0 | 5686 | 0.4971 | 0.7602 | 0.6526 | 0.7064 | |
|
| 0.4578 | 3.0 | 8529 | 0.4656 | 0.7775 | 0.6825 | 0.7300 | |
|
| 0.4346 | 4.0 | 11372 | 0.4565 | 0.7804 | 0.6744 | 0.7274 | |
|
| 0.4146 | 5.0 | 14215 | 0.4783 | 0.7812 | 0.7078 | 0.7445 | |
|
| 0.3952 | 6.0 | 17058 | 0.4675 | 0.7899 | 0.7042 | 0.7470 | |
|
| 0.3747 | 7.0 | 19901 | 0.4383 | 0.7895 | 0.7288 | 0.7591 | |
|
| 0.355 | 8.0 | 22744 | 0.4455 | 0.7948 | 0.7053 | 0.7500 | |
|
| 0.3362 | 9.0 | 25587 | 0.4483 | 0.7935 | 0.7334 | 0.7635 | |
|
| 0.3185 | 10.0 | 28430 | 0.4480 | 0.7956 | 0.7388 | 0.7672 | |
|
| 0.301 | 11.0 | 31273 | 0.4630 | 0.8055 | 0.7236 | 0.7646 | |
|
| 0.2848 | 12.0 | 34116 | 0.4850 | 0.8062 | 0.7352 | 0.7707 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|