metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv2_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8651001731387583
- name: F1
type: f1
value: 0.8160291438979962
hBERTv2_qqp
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.3129
- Accuracy: 0.8651
- F1: 0.8160
- Combined Score: 0.8406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.4179 | 1.0 | 1422 | 0.3830 | 0.8252 | 0.7916 | 0.8084 |
0.2978 | 2.0 | 2844 | 0.3507 | 0.8357 | 0.7906 | 0.8131 |
0.2318 | 3.0 | 4266 | 0.3129 | 0.8651 | 0.8160 | 0.8406 |
0.1765 | 4.0 | 5688 | 0.3540 | 0.8700 | 0.8328 | 0.8514 |
0.1305 | 5.0 | 7110 | 0.4276 | 0.8734 | 0.8267 | 0.8500 |
0.1003 | 6.0 | 8532 | 0.4078 | 0.8748 | 0.8292 | 0.8520 |
0.0788 | 7.0 | 9954 | 0.4069 | 0.8767 | 0.8345 | 0.8556 |
0.0625 | 8.0 | 11376 | 0.4723 | 0.8760 | 0.8322 | 0.8541 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2