hBERTv2_qqp / README.md
gokuls's picture
End of training
31ca1c5
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: hBERTv2_qqp
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QQP
          type: glue
          config: qqp
          split: validation
          args: qqp
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8651001731387583
          - name: F1
            type: f1
            value: 0.8160291438979962

hBERTv2_qqp

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • Accuracy: 0.8651
  • F1: 0.8160
  • Combined Score: 0.8406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.4179 1.0 1422 0.3830 0.8252 0.7916 0.8084
0.2978 2.0 2844 0.3507 0.8357 0.7906 0.8131
0.2318 3.0 4266 0.3129 0.8651 0.8160 0.8406
0.1765 4.0 5688 0.3540 0.8700 0.8328 0.8514
0.1305 5.0 7110 0.4276 0.8734 0.8267 0.8500
0.1003 6.0 8532 0.4078 0.8748 0.8292 0.8520
0.0788 7.0 9954 0.4069 0.8767 0.8345 0.8556
0.0625 8.0 11376 0.4723 0.8760 0.8322 0.8541

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2