|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: hBERTv2_qqp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE QQP |
|
type: glue |
|
config: qqp |
|
split: validation |
|
args: qqp |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8651001731387583 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8160291438979962 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv2_qqp |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2](https://huggingface.co/gokuls/bert_12_layer_model_v2) on the GLUE QQP dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3129 |
|
- Accuracy: 0.8651 |
|
- F1: 0.8160 |
|
- Combined Score: 0.8406 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.4179 | 1.0 | 1422 | 0.3830 | 0.8252 | 0.7916 | 0.8084 | |
|
| 0.2978 | 2.0 | 2844 | 0.3507 | 0.8357 | 0.7906 | 0.8131 | |
|
| 0.2318 | 3.0 | 4266 | 0.3129 | 0.8651 | 0.8160 | 0.8406 | |
|
| 0.1765 | 4.0 | 5688 | 0.3540 | 0.8700 | 0.8328 | 0.8514 | |
|
| 0.1305 | 5.0 | 7110 | 0.4276 | 0.8734 | 0.8267 | 0.8500 | |
|
| 0.1003 | 6.0 | 8532 | 0.4078 | 0.8748 | 0.8292 | 0.8520 | |
|
| 0.0788 | 7.0 | 9954 | 0.4069 | 0.8767 | 0.8345 | 0.8556 | |
|
| 0.0625 | 8.0 | 11376 | 0.4723 | 0.8760 | 0.8322 | 0.8541 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|