gokuls's picture
End of training
0d9d0bf verified
metadata
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-base.en-speech-commands-h
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7922661870503597

whisper-base.en-speech-commands-h

This model is a fine-tuned version of openai/whisper-base.en on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3313
  • Accuracy: 0.7923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3859 1.0 412 1.3474 0.7707
0.2732 2.0 824 1.2471 0.7599
0.2373 3.0 1236 1.2114 0.7729
0.1694 4.0 1648 1.1600 0.7914
0.1495 5.0 2060 1.1535 0.7914
0.1931 6.0 2472 1.1446 0.7860
0.1329 7.0 2884 1.3313 0.7923
0.0731 8.0 3296 1.2812 0.7860
0.0702 9.0 3708 1.2134 0.7873
0.0828 10.0 4120 1.6292 0.7887
0.08 11.0 4532 1.4677 0.7797
0.0481 12.0 4944 1.3770 0.7909

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1