|
--- |
|
license: apache-2.0 |
|
language: |
|
- el |
|
pipeline_tag: text-generation |
|
--- |
|
# Model Description |
|
|
|
This is an instruction tuned model based on the gsar78/GreekLlama-1.1B-base model. |
|
|
|
The dataset used has 52k instruction/response pairs, all in Greek language |
|
|
|
Notice: The model is for experimental & research purposes. |
|
|
|
# Usage |
|
|
|
To use you can just run the following in a Colab configured with a GPU: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import transformers |
|
import torch |
|
|
|
|
|
# Load the tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("gsar78/GreekLlama-1.1B-it") |
|
model = AutoModelForCausalLM.from_pretrained("gsar78/GreekLlama-1.1B-it") |
|
|
|
|
|
# Check if CUDA is available and move the model to GPU if possible |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
prompt = "Ποιά είναι τα δύο βασικά πράγματα που πρέπει να γνωρίζω για την Τεχνητή Νοημοσύνη:" |
|
|
|
# Tokenize the input prompt |
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
# Generate the output |
|
generation_params = { |
|
#"max_new_tokens": 250, # Adjust the number of tokens generated |
|
"do_sample": True, # Enable sampling to diversify outputs |
|
"temperature": 0.1, # Sampling temperature |
|
"top_p": 0.9, # Nucleus sampling |
|
"num_return_sequences": 1, |
|
} |
|
|
|
output = model.generate(**inputs, **generation_params) |
|
|
|
# Decode the generated text |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
print("Generated Text:") |
|
print(generated_text) |
|
``` |