|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ellis-v2-emotion-leadership |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ellis-v2-emotion-leadership |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7460 |
|
- Accuracy: 0.9411 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 70 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.3621 | 1.0 | 1109 | 0.3042 | 0.8964 | |
|
| 0.257 | 2.0 | 2218 | 0.2566 | 0.9259 | |
|
| 0.1991 | 3.0 | 3327 | 0.2492 | 0.9274 | |
|
| 0.1599 | 4.0 | 4436 | 0.2860 | 0.9320 | |
|
| 0.1335 | 5.0 | 5545 | 0.2966 | 0.9299 | |
|
| 0.1082 | 6.0 | 6654 | 0.3682 | 0.9274 | |
|
| 0.0805 | 7.0 | 7763 | 0.3384 | 0.9381 | |
|
| 0.056 | 8.0 | 8872 | 0.4321 | 0.9325 | |
|
| 0.0391 | 9.0 | 9981 | 0.4476 | 0.9264 | |
|
| 0.0431 | 10.0 | 11090 | 0.5036 | 0.9254 | |
|
| 0.037 | 11.0 | 12199 | 0.4724 | 0.9315 | |
|
| 0.032 | 12.0 | 13308 | 0.4975 | 0.9381 | |
|
| 0.0248 | 13.0 | 14417 | 0.5242 | 0.9294 | |
|
| 0.0194 | 14.0 | 15526 | 0.5792 | 0.9305 | |
|
| 0.0309 | 15.0 | 16635 | 0.5574 | 0.9315 | |
|
| 0.0309 | 16.0 | 17744 | 0.5071 | 0.9355 | |
|
| 0.0223 | 17.0 | 18853 | 0.5156 | 0.9355 | |
|
| 0.0235 | 18.0 | 19962 | 0.5363 | 0.9371 | |
|
| 0.014 | 19.0 | 21071 | 0.6050 | 0.9294 | |
|
| 0.0227 | 20.0 | 22180 | 0.5531 | 0.9371 | |
|
| 0.0133 | 21.0 | 23289 | 0.6171 | 0.9355 | |
|
| 0.0215 | 22.0 | 24398 | 0.5730 | 0.9320 | |
|
| 0.0143 | 23.0 | 25507 | 0.5958 | 0.9330 | |
|
| 0.0139 | 24.0 | 26616 | 0.5780 | 0.9335 | |
|
| 0.0104 | 25.0 | 27725 | 0.6212 | 0.9315 | |
|
| 0.0125 | 26.0 | 28834 | 0.6119 | 0.9335 | |
|
| 0.007 | 27.0 | 29943 | 0.6179 | 0.9360 | |
|
| 0.016 | 28.0 | 31052 | 0.6422 | 0.9355 | |
|
| 0.0128 | 29.0 | 32161 | 0.6028 | 0.9360 | |
|
| 0.007 | 30.0 | 33270 | 0.6751 | 0.9320 | |
|
| 0.0109 | 31.0 | 34379 | 0.6579 | 0.9371 | |
|
| 0.0055 | 32.0 | 35488 | 0.7140 | 0.9305 | |
|
| 0.0116 | 33.0 | 36597 | 0.6488 | 0.9360 | |
|
| 0.0138 | 34.0 | 37706 | 0.6029 | 0.9345 | |
|
| 0.0095 | 35.0 | 38815 | 0.6393 | 0.9355 | |
|
| 0.0041 | 36.0 | 39924 | 0.6387 | 0.9355 | |
|
| 0.0063 | 37.0 | 41033 | 0.6304 | 0.9371 | |
|
| 0.0037 | 38.0 | 42142 | 0.6349 | 0.9391 | |
|
| 0.0077 | 39.0 | 43251 | 0.6230 | 0.9406 | |
|
| 0.0027 | 40.0 | 44360 | 0.6546 | 0.9426 | |
|
| 0.0022 | 41.0 | 45469 | 0.7147 | 0.9350 | |
|
| 0.0054 | 42.0 | 46578 | 0.7450 | 0.9310 | |
|
| 0.006 | 43.0 | 47687 | 0.6921 | 0.9360 | |
|
| 0.0035 | 44.0 | 48796 | 0.6667 | 0.9376 | |
|
| 0.0078 | 45.0 | 49905 | 0.6562 | 0.9371 | |
|
| 0.0038 | 46.0 | 51014 | 0.6589 | 0.9376 | |
|
| 0.0032 | 47.0 | 52123 | 0.6429 | 0.9371 | |
|
| 0.0002 | 48.0 | 53232 | 0.6616 | 0.9386 | |
|
| 0.0022 | 49.0 | 54341 | 0.6737 | 0.9416 | |
|
| 0.0 | 50.0 | 55450 | 0.6911 | 0.9421 | |
|
| 0.0004 | 51.0 | 56559 | 0.7703 | 0.9335 | |
|
| 0.0047 | 52.0 | 57668 | 0.7535 | 0.9345 | |
|
| 0.0003 | 53.0 | 58777 | 0.7973 | 0.9284 | |
|
| 0.0026 | 54.0 | 59886 | 0.7266 | 0.9376 | |
|
| 0.0047 | 55.0 | 60995 | 0.7328 | 0.9340 | |
|
| 0.0 | 56.0 | 62104 | 0.7422 | 0.9371 | |
|
| 0.0006 | 57.0 | 63213 | 0.7275 | 0.9371 | |
|
| 0.0008 | 58.0 | 64322 | 0.7095 | 0.9396 | |
|
| 0.0009 | 59.0 | 65431 | 0.7112 | 0.9401 | |
|
| 0.0017 | 60.0 | 66540 | 0.6923 | 0.9421 | |
|
| 0.0022 | 61.0 | 67649 | 0.7383 | 0.9376 | |
|
| 0.0 | 62.0 | 68758 | 0.7314 | 0.9391 | |
|
| 0.0004 | 63.0 | 69867 | 0.7433 | 0.9381 | |
|
| 0.0 | 64.0 | 70976 | 0.7410 | 0.9386 | |
|
| 0.0 | 65.0 | 72085 | 0.7519 | 0.9386 | |
|
| 0.0003 | 66.0 | 73194 | 0.7459 | 0.9406 | |
|
| 0.0004 | 67.0 | 74303 | 0.7366 | 0.9401 | |
|
| 0.0 | 68.0 | 75412 | 0.7318 | 0.9411 | |
|
| 0.0 | 69.0 | 76521 | 0.7430 | 0.9411 | |
|
| 0.0 | 70.0 | 77630 | 0.7460 | 0.9411 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|