File size: 4,945 Bytes
4c84cee 07a1c9f 7c142cb 4c84cee 07a1c9f 04cb502 07a1c9f 302e356 936d25b 07a1c9f 04cb502 07a1c9f 103b1b1 07a1c9f f1c9bac f8d2c63 07a1c9f 04cb502 07a1c9f 2fe366f 07a1c9f 836bab6 f1c9bac 07a1c9f f8d2c63 07a1c9f 2fe366f 07a1c9f 04cb502 07a1c9f 33a8148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: apache-2.0
language:
- en
library_name: transformers
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
tags:
- gpt
- llm
- large language model
- open-source
datasets:
- h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1
---
# h2oGPT Model Card
## Summary
H2O.ai's `h2ogpt-oig-oasst1-256-6_9b` is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
- Base model: [EleutherAI/pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
- Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1)
- Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6_9b/blob/main/pythia-6.9b.h2ogpt-oig-oasst1-instruct-cleaned-v1.json.1_epochs.5fc91911bc2bfaaf3b6c2de577c4b0ae45a07a4a.9.zip)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
```bash
pip install transformers==4.28.1
pip install accelerate==0.18.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
```
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6_9b/blob/main/h2oai_pipeline.py),
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, device_map="auto")
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
```
## Model Architecture
```
GPTNeoXForCausalLM(
(gpt_neox): GPTNeoXModel(
(embed_in): Embedding(50432, 4096)
(layers): ModuleList(
(0-31): 32 x GPTNeoXLayer(
(input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(attention): GPTNeoXAttention(
(rotary_emb): RotaryEmbedding()
(query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
(dense): Linear(in_features=4096, out_features=4096, bias=True)
)
(mlp): GPTNeoXMLP(
(dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
(dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
(act): GELUActivation()
)
)
)
(final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
)
(embed_out): Linear(in_features=4096, out_features=50432, bias=False)
)
```
## Model Configuration
```json
GPTNeoXConfig {
"_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6_9b",
"architectures": [
"GPTNeoXForCausalLM"
],
"bos_token_id": 0,
"custom_pipelines": {
"text-generation": {
"impl": "h2oai_pipeline.H2OTextGenerationPipeline",
"pt": "AutoModelForCausalLM"
}
},
"eos_token_id": 0,
"hidden_act": "gelu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 16384,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 2048,
"model_type": "gpt_neox",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"rotary_emb_base": 10000,
"rotary_pct": 0.25,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.28.1",
"use_cache": true,
"use_parallel_residual": true,
"vocab_size": 50432
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_h2oai__h2ogpt-oig-oasst1-256-6_9b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 33.76 |
| ARC (25-shot) | 39.93 |
| HellaSwag (10-shot) | 65.42 |
| MMLU (5-shot) | 26.39 |
| TruthfulQA (0-shot) | 35.0 |
| Winogrande (5-shot) | 63.38 |
| GSM8K (5-shot) | 1.59 |
| DROP (3-shot) | 4.6 |
|