File size: 19,003 Bytes
13115a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2351
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: Are your thoughts sometimes so strong that you can almost hear
    them?
  sentences:
  - My emotions have almost always seemed flat regardless of what is going on around
    me.
  - Having powerful images or memories that sometimes come into your mind in which
    you feel the experience is happening again in the here and now?
  - I often think that I hear people talking only to discover that there was no one
    there.
- source_sentence: Having difficulty concentrating?
  sentences:
  - My thoughts are so hazy and unclear that I wish that I could just reach up and
    put them into place.
  - Most of the time I find it is very difficult to get my thoughts in order.
  - Experienced sleep disturbances?
- source_sentence: Feeling jumpy or easily startled?
  sentences:
  - I often worry that someone or something is controlling my behavior.
  - People find my conversations to be confusing or hard to follow.
  - Worried a lot about different things?
- source_sentence: Do you often have to keep an eye out to stop people from taking
    advantage of you?
  sentences:
  - I find that I am very often confused about what is going on around me.
  - I sometimes wonder if there is a small group of people who can control everyone
    else's behavior.
  - I have sometimes felt that strangers were reading my mind.
- source_sentence: I am not good at expressing my true feelings by the way I talk
    and look.
  sentences:
  - Felt down or depressed for most of the day
  - Felt nervous or anxious?
  - Experienced sleep disturbances?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.5680489773046146
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5532689999140259
      name: Spearman Cosine
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'I am not good at expressing my true feelings by the way I talk and look.',
    'Felt nervous or anxious?',
    'Experienced sleep disturbances?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.568      |
| **spearman_cosine** | **0.5533** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,351 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 16.73 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.82 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.26</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                 | sentence2                                                                                              | score             |
  |:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Do you believe in telepathy (mind-reading)?</code>                  | <code>I believe that there are secret signs in the world if you just know how to look for them.</code> | <code>0.15</code> |
  | <code>Irritable behavior, angry outbursts, or acting aggressively?</code> | <code>Felt “on edge”?</code>                                                                           | <code>0.62</code> |
  | <code>I have some eccentric (odd) habits.</code>                          | <code>I often have difficulty following what someone is saying to me.</code>                           | <code>0.0</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.L1Loss"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 236 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 236 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.4 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.29</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                                                                           | score             |
  |:----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Feeling afraid as if something awful might happen?</code> | <code>I have trouble following conversations with others.</code>                                                    | <code>0.19</code> |
  | <code>Do you believe in telepathy (mind-reading)?</code>        | <code>Feeling jumpy or easily startled?</code>                                                                      | <code>0.1</code>  |
  | <code>Other people see me as slightly eccentric (odd).</code>   | <code>I have felt that there were messages for me in the way things were arranged, like furniture in a room.</code> | <code>0.0</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.L1Loss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------:|
| 0.0680 | 10   | 0.2239        | -               | -               |
| 0.1361 | 20   | 0.2188        | -               | -               |
| 0.2041 | 30   | 0.2007        | -               | -               |
| 0.2721 | 40   | 0.2045        | -               | -               |
| 0.3401 | 50   | 0.2179        | 0.2197          | -               |
| 0.4082 | 60   | 0.2106        | -               | -               |
| 0.4762 | 70   | 0.2124        | -               | -               |
| 0.5442 | 80   | 0.2046        | -               | -               |
| 0.6122 | 90   | 0.2069        | -               | -               |
| 0.6803 | 100  | 0.1965        | 0.2112          | -               |
| 0.7483 | 110  | 0.2355        | -               | -               |
| 0.8163 | 120  | 0.2012        | -               | -               |
| 0.8844 | 130  | 0.2402        | -               | -               |
| 0.9524 | 140  | 0.2173        | -               | -               |
| 1.0204 | 150  | 0.1763        | 0.2043          | -               |
| 1.0884 | 160  | 0.1862        | -               | -               |
| 1.1565 | 170  | 0.1854        | -               | -               |
| 1.2245 | 180  | 0.193         | -               | -               |
| 1.2925 | 190  | 0.1852        | -               | -               |
| 1.3605 | 200  | 0.1908        | 0.1950          | -               |
| 1.4286 | 210  | 0.2002        | -               | -               |
| 1.4966 | 220  | 0.1945        | -               | -               |
| 1.5646 | 230  | 0.193         | -               | -               |
| 1.6327 | 240  | 0.1893        | -               | -               |
| 1.7007 | 250  | 0.171         | 0.1937          | -               |
| 1.7687 | 260  | 0.1848        | -               | -               |
| 1.8367 | 270  | 0.1909        | -               | -               |
| 1.9048 | 280  | 0.2138        | -               | -               |
| 1.9728 | 290  | 0.2014        | -               | -               |
| 2.0408 | 300  | 0.1855        | 0.1867          | -               |
| 2.1088 | 310  | 0.1891        | -               | -               |
| 2.1769 | 320  | 0.1849        | -               | -               |
| 2.2449 | 330  | 0.1741        | -               | -               |
| 2.3129 | 340  | 0.1775        | -               | -               |
| 2.3810 | 350  | 0.178         | 0.1871          | -               |
| 2.4490 | 360  | 0.1778        | -               | -               |
| 2.5170 | 370  | 0.174         | -               | -               |
| 2.5850 | 380  | 0.1654        | -               | -               |
| 2.6531 | 390  | 0.1954        | -               | -               |
| 2.7211 | 400  | 0.1584        | 0.1860          | -               |
| 2.7891 | 410  | 0.2019        | -               | -               |
| 2.8571 | 420  | 0.1941        | -               | -               |
| 2.9252 | 430  | 0.1855        | -               | -               |
| 2.9932 | 440  | 0.1823        | -               | -               |
| 3.0    | 441  | -             | -               | 0.5533          |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->