metadata
base_model: BAAI/bge-small-en-v1.5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@5
- dot_recall@10
- dot_ndcg@5
- dot_ndcg@10
- dot_ndcg@100
- dot_mrr@5
- dot_mrr@10
- dot_mrr@100
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:563
- loss:GISTEmbedLoss
widget:
- source_sentence: >-
Can I pay for parking using digital payment methods like UPI, credit/debit
cards, or mobile wallets?
sentences:
- >-
The vibrant colors of autumn leaves create a breathtaking tapestry
across the landscape, reminding us of nature's artistry. Many people
enjoy taking strolls through parks to appreciate the crisp air and the
sound of crunching leaves underfoot. Some choose to photograph the
scenery, capturing fleeting moments of beauty, while others might
indulge in seasonal treats like pumpkin spice lattes. Embracing the
change in seasons also encourages us to reflect on personal growth and
the passage of time as we move towards the winter months.
- >-
Yes, most parking areas accept digital payment methods such as UPI,
credit/debit cards, or mobile wallets to facilitate cashless
transactions. However, it is recommended to carry some cash as a backup
because digital payments might not always work due to network issues and
high crowd density during peak times.
- >-
Mahakumbh 2025 will start on 13 January with the Paush Purnima bath and
end on 26 February with the Mahashivratri bath.
- source_sentence: What is Aarti
sentences:
- >-
No, shuttle buses will not have dedicated volunteers specifically, but
for assistance, you can reach out to the nearest information center.
- >-
In India, since ancient times, rivers are worshipped due to their
importance to the human life.
Likewise, in Tirathraj Prayagraj, Aartis’ are performed on the banks of
Ganga, Yamuna and at Sangam with great admiration, deep-rooted honor and
devotion. In Prayagraj, Prayagraj Mela Authority and various other
communities make grand arrangements for these Aartis.
The Aartis are performed in the mornings and evenings, in which priests
(Batuks), normally 5 to 7 in number, chant hymns with great fervor,
holding meticulously designed lamps and worship the rivers with utmost
devotion.
The lamps held by the batuks represent the importance of panchtatva. On
one hand, flames of the lamps signify bowing to the waters of the sacred
rivers and on the other, the holy fumes emanating from the lamps appear
to play the mystic of heaven on earth.
- >-
In the realm of celestial bodies, the moons of Jupiter captivate
astronomers with their striking variations. These natural satellites
exhibit a diverse range of landscapes, from the icy crust of Europa to
the volcanic surface of Io, each revealing secrets about the formation
of our solar system.
In laboratories around the world, researchers utilize advanced
telescopes, funded by international space agencies, to monitor these
moons, collecting data that aids in understanding their geological
processes. They examine topographical maps and analyze spectrographs,
revealing rich insights into the chemical compositions present on these
distant worlds.
Collaborations between scientists and institutions have led to
remarkable discoveries, including the potential for subsurface oceans
beneath the icy shell of Europa, stirring excitement about the
possibility of extraterrestrial life. Meanwhile, rumors of missions
planned to explore these enigmatic moons intensify interest in the
ongoing quest for knowledge beyond our home planet.
- source_sentence: Which all companies offer tour services?
sentences:
- >-
There are no specific facilities exclusively for senior citizens at the
Railway Junction in relation to the Mela. However, most railway stations
generally offer basic amenities like wheelchairs, assistance for
boarding and de-boarding, and special seating areas for senior citizens
or those with mobility issues. It is advisable for senior citizens to
check with the railway authorities for any additional support that might
be available during the Mela.
- >-
The art of origami has captivated many enthusiasts around the world.
Crafting intricate designs from simple sheets of paper showcases
creativity and precision. Essential tools include sharp scissors, bone
folders, and high-quality paper to achieve the best results. Workshops
often focus on advanced techniques, leading to beautiful decorative
pieces and useful items, enhancing the enjoyment of this timeless craft.
- >-
All information provided here includes tour services provided by UPSTDC
(Uttar Pradesh State Tourism Development Corporation). Additionally,
popular platforms like MakeMyTrip and other travel websites offer their
own tour packages for Kumbh Mela and nearby attractions. For a wider
range of options, you can check these services directly on their
websites to find a tour that best suits your needs.
- source_sentence: From when to when is the Mela?
sentences:
- >-
Mahakumbh Mela 2025 will begin on 13 January with the Paush Purnima bath
and will conclude on 26 February with the Mahashivratri bath.
While every day during the Mahakumbh is considered auspicious for bathing, the main bathing festivals are as follows:
1. Paush Purnima – 13 January
2. Makar Sankranti – 14 January
3. Mauni Amavasya – 29 January
4. Vasant Panchami – 3 February
5. Maghi Purnima – 12 February
6. Mahashivratri – 26 February
Out of these, three dates are Shahi Snan festivals, when the Akharas and saints proceed with grand processions for the bath:
1. Makar Sankranti – 14 January
2. Mauni Amavasya – 29 January
3. Vasant Panchami – 3 February
- >-
The sky today is filled with vibrant clouds, where shades of orange and
pink blend seamlessly into vast expanses of blue. The wind carries the
sounds of distant laughter, as children chase each other through
sprawling fields of lush green grass. Nearby, an old oak tree stands
tall, its branches swaying gently and offering shade to those seeking
respite from the warmth of the sun.
A stream meanders through the landscape, its clear waters reflecting the
brilliant hues of the sky above. Dragonflies dart about, their
iridescent wings catching the light as they flit from flower to flower.
In the distance, a family prepares a picnic, the aroma of freshly baked
bread mingling with the sweet scent of blooming wildflowers.
As the afternoon stretches on, the sun begins its slow descent, painting
the horizon in richer tones. The air is filled with a sense of peace and
joy, moments warm with the laughter of friends and the thrill of
nature's beauty all around.
- >-
No, there is no special bus service specifically for women or families
traveling from the Bus Stand to the Mela. Shuttle buses would be
available with fixed timings and route plans which offer convenient
travel
- source_sentence: What is the ritual of Snan or bathing?
sentences:
- >-
Yes, luggage porter services are available at Prayagraj Junction for
pilgrims heading to the Mela. These porters, often referred to as
coolies
- >-
Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati
during Mahakumbh has special significance. It is believed that by
bathing in this holy confluence, all the sins of a person are washed
away and he attains salvation.
Bathing not only symbolizes personal purification, but it also conveys
the message of social harmony and unity, where people from different
cultures and communities come together to participate in this sacred
ritual.
It is considered that in special circumstances, the water of rivers also
acquires a special life-giving quality, i.e. nectar, which not only
leads to spiritual development along with purification of the mind, but
also gives physical benefits by getting health.
- >-
The art of knitting is a fascinating hobby that allows individuals to
create beautiful and functional pieces from yarn. By intertwining
strands of wool or cotton, one can produce items ranging from scarves to
intricate sweaters. This craft has been passed down through generations,
often bringing family members together for cozy evenings filled with
creativity and conversation.
Knitting not only provides a sense of accomplishment with every
completed project but also promotes focus and relaxation, making it an
excellent activity for reducing stress. Furthermore, the choice of
colors and patterns can result in vibrant works of art, showcasing the
unique style and personality of the knitter. Engaging in this craft
often leads to new friendships within community groups that gather to
share techniques and ideas, fostering a sense of belonging among
enthusiasts.
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: val evaluator
type: val_evaluator
metrics:
- type: cosine_accuracy@1
value: 0.8156028368794326
name: Cosine Accuracy@1
- type: cosine_accuracy@5
value: 0.9929078014184397
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8156028368794326
name: Cosine Precision@1
- type: cosine_precision@5
value: 0.1985815602836879
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8156028368794326
name: Cosine Recall@1
- type: cosine_recall@5
value: 0.9929078014184397
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.9154696629317853
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.9179959550389344
name: Cosine Ndcg@10
- type: cosine_ndcg@100
value: 0.9179959550389344
name: Cosine Ndcg@100
- type: cosine_mrr@5
value: 0.8891252955082741
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.8903073286052008
name: Cosine Mrr@10
- type: cosine_mrr@100
value: 0.8903073286052008
name: Cosine Mrr@100
- type: cosine_map@100
value: 0.8903073286052009
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8156028368794326
name: Dot Accuracy@1
- type: dot_accuracy@5
value: 0.9929078014184397
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8156028368794326
name: Dot Precision@1
- type: dot_precision@5
value: 0.1985815602836879
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.8156028368794326
name: Dot Recall@1
- type: dot_recall@5
value: 0.9929078014184397
name: Dot Recall@5
- type: dot_recall@10
value: 1
name: Dot Recall@10
- type: dot_ndcg@5
value: 0.9154696629317853
name: Dot Ndcg@5
- type: dot_ndcg@10
value: 0.9179959550389344
name: Dot Ndcg@10
- type: dot_ndcg@100
value: 0.9179959550389344
name: Dot Ndcg@100
- type: dot_mrr@5
value: 0.8891252955082741
name: Dot Mrr@5
- type: dot_mrr@10
value: 0.8903073286052008
name: Dot Mrr@10
- type: dot_mrr@100
value: 0.8903073286052008
name: Dot Mrr@100
- type: dot_map@100
value: 0.8903073286052009
name: Dot Map@100
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
# Run inference
sentences = [
'What is the ritual of Snan or bathing?',
'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation.\n\nBathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual.\n\nIt is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health.',
'The art of knitting is a fascinating hobby that allows individuals to create beautiful and functional pieces from yarn. By intertwining strands of wool or cotton, one can produce items ranging from scarves to intricate sweaters. This craft has been passed down through generations, often bringing family members together for cozy evenings filled with creativity and conversation.\n\nKnitting not only provides a sense of accomplishment with every completed project but also promotes focus and relaxation, making it an excellent activity for reducing stress. Furthermore, the choice of colors and patterns can result in vibrant works of art, showcasing the unique style and personality of the knitter. Engaging in this craft often leads to new friendships within community groups that gather to share techniques and ideas, fostering a sense of belonging among enthusiasts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
val_evaluator
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8156 |
cosine_accuracy@5 | 0.9929 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8156 |
cosine_precision@5 | 0.1986 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8156 |
cosine_recall@5 | 0.9929 |
cosine_recall@10 | 1.0 |
cosine_ndcg@5 | 0.9155 |
cosine_ndcg@10 | 0.918 |
cosine_ndcg@100 | 0.918 |
cosine_mrr@5 | 0.8891 |
cosine_mrr@10 | 0.8903 |
cosine_mrr@100 | 0.8903 |
cosine_map@100 | 0.8903 |
dot_accuracy@1 | 0.8156 |
dot_accuracy@5 | 0.9929 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.8156 |
dot_precision@5 | 0.1986 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.8156 |
dot_recall@5 | 0.9929 |
dot_recall@10 | 1.0 |
dot_ndcg@5 | 0.9155 |
dot_ndcg@10 | 0.918 |
dot_ndcg@100 | 0.918 |
dot_mrr@5 | 0.8891 |
dot_mrr@10 | 0.8903 |
dot_mrr@100 | 0.8903 |
dot_map@100 | 0.8903 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 563 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 563 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 16.33 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 93.51 tokens
- max: 402 tokens
- min: 16 tokens
- mean: 109.62 tokens
- max: 269 tokens
- Samples:
anchor positive negative Are there attached bathrooms in tents?
Attached bathroom facilities in tents vary by vendor and tent type. To know more about the availability of attached bathrooms, please reach out to your chosen Tent City vendor. For more information about these vendors and their services, please click here
The colors of the rainbow blend seamlessly across the canvas of the sky, creating a stunning visual display. Enjoying the beauty of nature can greatly enhance one's mood and inspire creativity. Take a moment to appreciate the vibrant hues and how they interact, as this can lead to a greater understanding of art and light. Exploring different forms of expression allows for personal growth and emotional exploration.
Are there any discounts for senior citizens or children on buses traveling from the Bus Stand to the Mela?
No, there are no specific discounts available for senior citizens or children on buses traveling from the Bus Stand to the Mela. Standard ticket prices generally apply to all passengers.
The vibrant colors of autumn leaves create a breathtaking scene as they cascade gently to the ground. Local parks become havens for photographers and nature enthusiasts alike, capturing the fleeting beauty of the season. Crisp air invigorates leisurely strolls, while children gather acorns and pinecones, crafting treasures from nature’s bounty.
Are there any luggage porter services available at Prayagraj Junction for pilgrims heading to the Mela?
Yes, luggage porter services are available at Prayagraj Junction for pilgrims heading to the Mela. These porters, often referred to as coolies
can be hired directly at the station to assist with carrying luggage from the train platform to your onward transport or directly to the Mela area.
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Evaluation Dataset
Unnamed Dataset
- Size: 141 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 141 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 16.05 tokens
- max: 30 tokens
- min: 8 tokens
- mean: 88.91 tokens
- max: 324 tokens
- min: 27 tokens
- mean: 104.84 tokens
- max: 262 tokens
- Samples:
anchor positive negative What family-friendly tours are available?
All tours are designed with families in mind, ensuring a safe, comfortable, and enjoyable experience for all age groups. Whether traveling with children or elderly family members, the tours are structured to accommodate the needs of everyone in the group.
Specific tours for senior citizens are also available. To explore them, click here : https://bit.ly/4eWFRoHThe majestic mountains rise against the azure sky, their peaks adorned with glistening snow that sparkles in the sunlight. deep valleys shelter hidden waterfalls, where crystal-clear waters cascade gracefully over rocks, creating a tranquil sound reverberating through the lush landscape. Wildlife thrives here, and one may spot elusive deer grazing in the early morning mist. As dusk settles, the horizon transforms into a canvas of vibrant hues, painting a breathtaking sunset that captivates the soul. Each season unveils unique beauty, inviting adventurers to explore its wonders.
What are the charges for a private taxi or cab from Prayagraj Airport to the Mela grounds?
Private taxi charges are not fixed
The garden blooms vibrantly with colors and fragrances that attract butterflies and bees. Each petal holds a story from the earth, whispering tales of growth and resilience. Nearby, a small pond reflects the blue sky, while frogs leap joyfully on lily pads, creating ripples that dance across the surface. The sound of rustling leaves accompanies the gentle breeze, making nature's symphony a soothing backdrop for all who pause and appreciate this serene setting. As the sun sets, golden hues envelop the scene, inviting evening creatures to awaken under the twilight.
What are the options for traveling to the Kumbh Mela if I arrive late at night at Prayagraj Junction?
If you arrive late at night at Prayagraj Junction for the Kumbh Mela, you have majorly 2 options for travel.
1. Taxi/Cabs: You can easily find 24/7 taxi services outside the railway station. Prepaid taxis are the most convenient and safe option.
2. Auto Rickshaws:Auto rickshaws are readily available outside the railway station.The blooming desert blooms with vibrant colors as dusk approaches. Amidst the sands, ancient stories whisper through the wind, recalling journeys of nomads who tread lightly upon the earth. Some dance beneath the starlit skies, celebrating the beauty of freedom and the vastness of their surroundings. The nocturnal creatures awaken, each sound echoing tales of survival and adventure. Beyond the horizon, a tapestry of dreams unfurls, where every grain of sand holds the promise of a new discovery waiting to be unveiled.
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16gradient_accumulation_steps
: 2learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 90warmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 90max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | val_evaluator_cosine_map@100 |
---|---|---|---|---|
0.5556 | 10 | 0.9623 | 0.5803 | 0.7676 |
1.1111 | 20 | 0.8653 | 0.5278 | 0.7684 |
1.6667 | 30 | 0.9346 | 0.4556 | 0.7692 |
2.2222 | 40 | 0.8058 | 0.3928 | 0.7687 |
2.7778 | 50 | 0.6639 | 0.3282 | 0.7723 |
3.3333 | 60 | 0.4974 | 0.2657 | 0.7784 |
3.8889 | 70 | 0.4447 | 0.2130 | 0.7877 |
4.4444 | 80 | 0.4309 | 0.1753 | 0.7922 |
5.0 | 90 | 0.2755 | 0.1320 | 0.7951 |
5.5556 | 100 | 0.3105 | 0.0826 | 0.8029 |
6.1111 | 110 | 0.1539 | 0.0479 | 0.8106 |
6.6667 | 120 | 0.22 | 0.0312 | 0.8141 |
7.2222 | 130 | 0.235 | 0.0173 | 0.8245 |
7.7778 | 140 | 0.1517 | 0.0119 | 0.8257 |
8.3333 | 150 | 0.1328 | 0.0095 | 0.8311 |
8.8889 | 160 | 0.1175 | 0.0055 | 0.8319 |
9.4444 | 170 | 0.1178 | 0.0037 | 0.8308 |
10.0 | 180 | 0.0598 | 0.0034 | 0.8338 |
10.5556 | 190 | 0.0958 | 0.0030 | 0.8324 |
11.1111 | 200 | 0.0681 | 0.0019 | 0.8331 |
11.6667 | 210 | 0.069 | 0.0013 | 0.8406 |
12.2222 | 220 | 0.0327 | 0.0009 | 0.8522 |
12.7778 | 230 | 0.0833 | 0.0006 | 0.8589 |
13.3333 | 240 | 0.0806 | 0.0005 | 0.8596 |
13.8889 | 250 | 0.0714 | 0.0004 | 0.8658 |
14.4444 | 260 | 0.0813 | 0.0004 | 0.8659 |
15.0 | 270 | 0.0512 | 0.0003 | 0.8676 |
15.5556 | 280 | 0.043 | 0.0003 | 0.8677 |
16.1111 | 290 | 0.0526 | 0.0003 | 0.8677 |
16.6667 | 300 | 0.0291 | 0.0002 | 0.8651 |
17.2222 | 310 | 0.0487 | 0.0002 | 0.8662 |
17.7778 | 320 | 0.054 | 0.0002 | 0.8621 |
18.3333 | 330 | 0.067 | 0.0002 | 0.8652 |
18.8889 | 340 | 0.0415 | 0.0002 | 0.8652 |
19.4444 | 350 | 0.0484 | 0.0002 | 0.8652 |
20.0 | 360 | 0.0304 | 0.0002 | 0.8690 |
20.5556 | 370 | 0.025 | 0.0002 | 0.8697 |
21.1111 | 380 | 0.0549 | 0.0002 | 0.8697 |
21.6667 | 390 | 0.0375 | 0.0002 | 0.8736 |
22.2222 | 400 | 0.0293 | 0.0002 | 0.8749 |
22.7778 | 410 | 0.0558 | 0.0002 | 0.8728 |
23.3333 | 420 | 0.0458 | 0.0002 | 0.8730 |
23.8889 | 430 | 0.0235 | 0.0002 | 0.8730 |
24.4444 | 440 | 0.0515 | 0.0002 | 0.8730 |
25.0 | 450 | 0.0337 | 0.0002 | 0.8734 |
25.5556 | 460 | 0.0376 | 0.0002 | 0.8734 |
26.1111 | 470 | 0.0189 | 0.0003 | 0.8734 |
26.6667 | 480 | 0.032 | 0.0002 | 0.8734 |
27.2222 | 490 | 0.025 | 0.0002 | 0.8695 |
27.7778 | 500 | 0.0258 | 0.0002 | 0.8704 |
28.3333 | 510 | 0.0351 | 0.0002 | 0.8681 |
28.8889 | 520 | 0.0285 | 0.0002 | 0.8679 |
29.4444 | 530 | 0.0263 | 0.0002 | 0.8679 |
30.0 | 540 | 0.0901 | 0.0002 | 0.8679 |
30.5556 | 550 | 0.0323 | 0.0001 | 0.8686 |
31.1111 | 560 | 0.0406 | 0.0001 | 0.8728 |
31.6667 | 570 | 0.0302 | 0.0001 | 0.8712 |
32.2222 | 580 | 0.0195 | 0.0001 | 0.8718 |
32.7778 | 590 | 0.0665 | 0.0001 | 0.8718 |
33.3333 | 600 | 0.0153 | 0.0001 | 0.8728 |
33.8889 | 610 | 0.0378 | 0.0001 | 0.8728 |
34.4444 | 620 | 0.0369 | 0.0001 | 0.8763 |
35.0 | 630 | 0.0238 | 0.0001 | 0.8706 |
35.5556 | 640 | 0.0275 | 0.0001 | 0.8720 |
36.1111 | 650 | 0.0469 | 0.0001 | 0.8708 |
36.6667 | 660 | 0.0438 | 0.0001 | 0.8788 |
37.2222 | 670 | 0.0333 | 0.0001 | 0.8800 |
37.7778 | 680 | 0.0186 | 0.0001 | 0.8765 |
38.3333 | 690 | 0.0308 | 0.0001 | 0.8765 |
38.8889 | 700 | 0.0713 | 0.0001 | 0.8767 |
39.4444 | 710 | 0.0188 | 0.0001 | 0.8767 |
40.0 | 720 | 0.0205 | 0.0001 | 0.8767 |
40.5556 | 730 | 0.0261 | 0.0001 | 0.8767 |
41.1111 | 740 | 0.0193 | 0.0001 | 0.8755 |
41.6667 | 750 | 0.0367 | 0.0000 | 0.8755 |
42.2222 | 760 | 0.0515 | 0.0000 | 0.8755 |
42.7778 | 770 | 0.0649 | 0.0000 | 0.8844 |
43.3333 | 780 | 0.0333 | 0.0000 | 0.8879 |
43.8889 | 790 | 0.0498 | 0.0000 | 0.8868 |
44.4444 | 800 | 0.0324 | 0.0000 | 0.8832 |
45.0 | 810 | 0.0321 | 0.0000 | 0.8832 |
45.5556 | 820 | 0.0354 | 0.0000 | 0.8832 |
46.1111 | 830 | 0.04 | 0.0000 | 0.8868 |
46.6667 | 840 | 0.0176 | 0.0000 | 0.8868 |
47.2222 | 850 | 0.0297 | 0.0000 | 0.8868 |
47.7778 | 860 | 0.0469 | 0.0000 | 0.8868 |
48.3333 | 870 | 0.025 | 0.0000 | 0.8868 |
48.8889 | 880 | 0.0425 | 0.0000 | 0.8868 |
49.4444 | 890 | 0.0475 | 0.0000 | 0.8868 |
50.0 | 900 | 0.0529 | 0.0000 | 0.8868 |
50.5556 | 910 | 0.0312 | 0.0000 | 0.8868 |
51.1111 | 920 | 0.0385 | 0.0000 | 0.8832 |
51.6667 | 930 | 0.0316 | 0.0000 | 0.8832 |
52.2222 | 940 | 0.0361 | 0.0000 | 0.8832 |
52.7778 | 950 | 0.053 | 0.0000 | 0.8832 |
53.3333 | 960 | 0.0226 | 0.0000 | 0.8868 |
53.8889 | 970 | 0.0781 | 0.0000 | 0.8868 |
54.4444 | 980 | 0.03 | 0.0000 | 0.8868 |
55.0 | 990 | 0.0349 | 0.0000 | 0.8832 |
55.5556 | 1000 | 0.0539 | 0.0000 | 0.8832 |
56.1111 | 1010 | 0.0351 | 0.0000 | 0.8832 |
56.6667 | 1020 | 0.0506 | 0.0000 | 0.8832 |
57.2222 | 1030 | 0.0204 | 0.0000 | 0.8832 |
57.7778 | 1040 | 0.0254 | 0.0000 | 0.8844 |
58.3333 | 1050 | 0.0274 | 0.0000 | 0.8844 |
58.8889 | 1060 | 0.001 | 0.0000 | 0.8844 |
59.4444 | 1070 | 0.049 | 0.0000 | 0.8844 |
60.0 | 1080 | 0.028 | 0.0000 | 0.8844 |
60.5556 | 1090 | 0.0477 | 0.0000 | 0.8844 |
61.1111 | 1100 | 0.0304 | 0.0000 | 0.8844 |
61.6667 | 1110 | 0.0188 | 0.0000 | 0.8844 |
62.2222 | 1120 | 0.0247 | 0.0000 | 0.8879 |
62.7778 | 1130 | 0.0428 | 0.0000 | 0.8879 |
63.3333 | 1140 | 0.0218 | 0.0000 | 0.8879 |
63.8889 | 1150 | 0.0476 | 0.0000 | 0.8868 |
64.4444 | 1160 | 0.021 | 0.0000 | 0.8868 |
65.0 | 1170 | 0.0435 | 0.0000 | 0.8856 |
65.5556 | 1180 | 0.0311 | 0.0000 | 0.8856 |
66.1111 | 1190 | 0.0275 | 0.0000 | 0.8856 |
66.6667 | 1200 | 0.0405 | 0.0000 | 0.8891 |
67.2222 | 1210 | 0.0009 | 0.0000 | 0.8891 |
67.7778 | 1220 | 0.0506 | 0.0000 | 0.8891 |
68.3333 | 1230 | 0.0538 | 0.0000 | 0.8891 |
68.8889 | 1240 | 0.0251 | 0.0000 | 0.8891 |
69.4444 | 1250 | 0.0168 | 0.0000 | 0.8891 |
70.0 | 1260 | 0.0527 | 0.0000 | 0.8903 |
70.5556 | 1270 | 0.0491 | 0.0000 | 0.8903 |
71.1111 | 1280 | 0.0092 | 0.0000 | 0.8903 |
71.6667 | 1290 | 0.0257 | 0.0000 | 0.8903 |
72.2222 | 1300 | 0.0455 | 0.0 | 0.8903 |
72.7778 | 1310 | 0.0271 | 0.0000 | 0.8903 |
73.3333 | 1320 | 0.04 | 0.0000 | 0.8903 |
73.8889 | 1330 | 0.0171 | 0.0000 | 0.8903 |
74.4444 | 1340 | 0.0157 | 0.0000 | 0.8903 |
75.0 | 1350 | 0.0323 | 0.0000 | 0.8903 |
75.5556 | 1360 | 0.0372 | 0.0000 | 0.8903 |
76.1111 | 1370 | 0.0109 | 0.0000 | 0.8903 |
76.6667 | 1380 | 0.0358 | 0.0000 | 0.8903 |
77.2222 | 1390 | 0.0279 | 0.0000 | 0.8903 |
77.7778 | 1400 | 0.0173 | 0.0000 | 0.8903 |
78.3333 | 1410 | 0.0409 | 0.0000 | 0.8903 |
78.8889 | 1420 | 0.0139 | 0.0000 | 0.8903 |
79.4444 | 1430 | 0.0123 | 0.0000 | 0.8903 |
80.0 | 1440 | 0.0232 | 0.0000 | 0.8903 |
80.5556 | 1450 | 0.0145 | 0.0000 | 0.8903 |
81.1111 | 1460 | 0.0261 | 0.0000 | 0.8903 |
81.6667 | 1470 | 0.0137 | 0.0000 | 0.8903 |
82.2222 | 1480 | 0.0146 | 0.0000 | 0.8903 |
82.7778 | 1490 | 0.0096 | 0.0000 | 0.8903 |
83.3333 | 1500 | 0.0245 | 0.0000 | 0.8903 |
83.8889 | 1510 | 0.0312 | 0.0000 | 0.8903 |
84.4444 | 1520 | 0.0174 | 0.0000 | 0.8903 |
85.0 | 1530 | 0.0437 | 0.0000 | 0.8903 |
85.5556 | 1540 | 0.0301 | 0.0000 | 0.8903 |
86.1111 | 1550 | 0.0119 | 0.0000 | 0.8903 |
86.6667 | 1560 | 0.0554 | 0.0000 | 0.8903 |
87.2222 | 1570 | 0.021 | 0.0000 | 0.8903 |
87.7778 | 1580 | 0.029 | 0.0000 | 0.8903 |
88.3333 | 1590 | 0.0132 | 0.0000 | 0.8903 |
88.8889 | 1600 | 0.0339 | 0.0000 | 0.8903 |
89.4444 | 1610 | 0.0412 | 0.0000 | 0.8903 |
90.0 | 1620 | 0.0847 | 0.0000 | 0.8903 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}