metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_adamax_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.926829268292683
hushem_40x_deit_small_adamax_001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6357
- Accuracy: 0.9268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2206 | 1.0 | 220 | 1.1411 | 0.6829 |
0.1873 | 2.0 | 440 | 0.5940 | 0.8780 |
0.0203 | 3.0 | 660 | 0.9936 | 0.7805 |
0.0624 | 4.0 | 880 | 0.3597 | 0.9024 |
0.0108 | 5.0 | 1100 | 1.3539 | 0.7805 |
0.0858 | 6.0 | 1320 | 0.8241 | 0.8049 |
0.0246 | 7.0 | 1540 | 1.0359 | 0.8049 |
0.0131 | 8.0 | 1760 | 0.7509 | 0.8049 |
0.0013 | 9.0 | 1980 | 1.4351 | 0.7805 |
0.0095 | 10.0 | 2200 | 1.1916 | 0.7561 |
0.0002 | 11.0 | 2420 | 0.7203 | 0.8293 |
0.0011 | 12.0 | 2640 | 1.0391 | 0.8293 |
0.007 | 13.0 | 2860 | 1.8906 | 0.7317 |
0.0002 | 14.0 | 3080 | 0.4058 | 0.9512 |
0.0 | 15.0 | 3300 | 0.3547 | 0.9268 |
0.0 | 16.0 | 3520 | 0.3764 | 0.9268 |
0.0 | 17.0 | 3740 | 0.3894 | 0.9268 |
0.0 | 18.0 | 3960 | 0.4031 | 0.9268 |
0.0 | 19.0 | 4180 | 0.4138 | 0.9268 |
0.0 | 20.0 | 4400 | 0.4231 | 0.9268 |
0.0 | 21.0 | 4620 | 0.4326 | 0.9268 |
0.0 | 22.0 | 4840 | 0.4413 | 0.9268 |
0.0 | 23.0 | 5060 | 0.4490 | 0.9268 |
0.0 | 24.0 | 5280 | 0.4564 | 0.9268 |
0.0 | 25.0 | 5500 | 0.4638 | 0.9268 |
0.0 | 26.0 | 5720 | 0.4710 | 0.9268 |
0.0 | 27.0 | 5940 | 0.4779 | 0.9268 |
0.0 | 28.0 | 6160 | 0.4851 | 0.9268 |
0.0 | 29.0 | 6380 | 0.4923 | 0.9268 |
0.0 | 30.0 | 6600 | 0.4998 | 0.9268 |
0.0 | 31.0 | 6820 | 0.5069 | 0.9268 |
0.0 | 32.0 | 7040 | 0.5143 | 0.9268 |
0.0 | 33.0 | 7260 | 0.5224 | 0.9268 |
0.0 | 34.0 | 7480 | 0.5303 | 0.9268 |
0.0 | 35.0 | 7700 | 0.5381 | 0.9268 |
0.0 | 36.0 | 7920 | 0.5458 | 0.9268 |
0.0 | 37.0 | 8140 | 0.5543 | 0.9268 |
0.0 | 38.0 | 8360 | 0.5622 | 0.9268 |
0.0 | 39.0 | 8580 | 0.5706 | 0.9268 |
0.0 | 40.0 | 8800 | 0.5791 | 0.9268 |
0.0 | 41.0 | 9020 | 0.5871 | 0.9268 |
0.0 | 42.0 | 9240 | 0.5951 | 0.9268 |
0.0 | 43.0 | 9460 | 0.6028 | 0.9268 |
0.0 | 44.0 | 9680 | 0.6101 | 0.9268 |
0.0 | 45.0 | 9900 | 0.6166 | 0.9268 |
0.0 | 46.0 | 10120 | 0.6227 | 0.9268 |
0.0 | 47.0 | 10340 | 0.6281 | 0.9268 |
0.0 | 48.0 | 10560 | 0.6322 | 0.9268 |
0.0 | 49.0 | 10780 | 0.6350 | 0.9268 |
0.0 | 50.0 | 11000 | 0.6357 | 0.9268 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2