hkivancoral's picture
End of training
7eb9a71
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5238095238095238

hushem_40x_deit_small_sgd_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1108
  • Accuracy: 0.5238

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.763 1.0 219 1.5785 0.2857
1.5719 2.0 438 1.5003 0.2857
1.452 3.0 657 1.4620 0.2143
1.4006 4.0 876 1.4368 0.2143
1.3854 5.0 1095 1.4164 0.2143
1.3041 6.0 1314 1.3988 0.2381
1.296 7.0 1533 1.3830 0.2619
1.276 8.0 1752 1.3685 0.2381
1.2474 9.0 1971 1.3546 0.2381
1.2128 10.0 2190 1.3420 0.2381
1.2113 11.0 2409 1.3297 0.2381
1.2121 12.0 2628 1.3176 0.2619
1.1861 13.0 2847 1.3062 0.2619
1.1756 14.0 3066 1.2946 0.3095
1.1431 15.0 3285 1.2837 0.3571
1.1487 16.0 3504 1.2730 0.3095
1.1705 17.0 3723 1.2625 0.3095
1.1482 18.0 3942 1.2522 0.2857
1.1037 19.0 4161 1.2421 0.3095
1.0872 20.0 4380 1.2325 0.3810
1.1026 21.0 4599 1.2229 0.4048
1.0517 22.0 4818 1.2135 0.4048
1.0226 23.0 5037 1.2052 0.4286
1.0485 24.0 5256 1.1974 0.4286
1.0319 25.0 5475 1.1896 0.4286
0.9983 26.0 5694 1.1821 0.4286
1.0014 27.0 5913 1.1755 0.4048
1.0162 28.0 6132 1.1694 0.4048
0.986 29.0 6351 1.1635 0.4048
0.9747 30.0 6570 1.1582 0.4286
0.9811 31.0 6789 1.1532 0.4286
0.9907 32.0 7008 1.1482 0.4286
0.9904 33.0 7227 1.1437 0.4286
0.9293 34.0 7446 1.1399 0.4524
0.9752 35.0 7665 1.1362 0.4524
0.9789 36.0 7884 1.1326 0.4762
0.9516 37.0 8103 1.1293 0.5
0.9703 38.0 8322 1.1262 0.5
0.8944 39.0 8541 1.1236 0.5238
0.9388 40.0 8760 1.1213 0.5238
0.9573 41.0 8979 1.1191 0.5238
0.9441 42.0 9198 1.1172 0.5238
0.9438 43.0 9417 1.1156 0.5238
0.9221 44.0 9636 1.1141 0.5238
0.9079 45.0 9855 1.1130 0.5238
0.962 46.0 10074 1.1121 0.5238
0.9464 47.0 10293 1.1114 0.5238
0.9323 48.0 10512 1.1110 0.5238
0.9581 49.0 10731 1.1108 0.5238
0.942 50.0 10950 1.1108 0.5238

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2