hkivancoral's picture
End of training
23c268a
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5952380952380952

hushem_5x_deit_small_rms_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6694
  • Accuracy: 0.5952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1638 1.0 28 1.7503 0.2381
1.4446 2.0 56 1.5611 0.2619
1.4481 3.0 84 1.4312 0.2381
1.3982 4.0 112 1.3919 0.2619
1.3867 5.0 140 1.4053 0.2619
1.382 6.0 168 1.3617 0.2619
1.2911 7.0 196 1.5439 0.4048
1.1486 8.0 224 1.1564 0.4286
1.0554 9.0 252 1.0568 0.4762
1.0402 10.0 280 0.8946 0.6190
0.9192 11.0 308 0.7214 0.7381
1.0116 12.0 336 0.8931 0.6905
0.9735 13.0 364 0.8359 0.6905
0.9105 14.0 392 0.6761 0.7619
0.8218 15.0 420 0.6339 0.7857
0.8745 16.0 448 0.7396 0.7619
0.8355 17.0 476 0.7738 0.7381
0.8644 18.0 504 0.6532 0.7619
0.8014 19.0 532 0.7016 0.7381
0.8685 20.0 560 0.7175 0.7381
0.7709 21.0 588 0.6588 0.7619
0.778 22.0 616 0.8635 0.7381
0.8232 23.0 644 0.6385 0.7143
0.891 24.0 672 0.7133 0.6667
0.714 25.0 700 0.6807 0.6905
0.6766 26.0 728 0.9128 0.6429
0.734 27.0 756 0.7515 0.6905
0.7087 28.0 784 0.6378 0.6905
0.6295 29.0 812 0.9113 0.6667
0.6414 30.0 840 0.9201 0.6190
0.6359 31.0 868 0.7354 0.7143
0.6485 32.0 896 0.6558 0.6429
0.6242 33.0 924 0.7790 0.6429
0.647 34.0 952 1.0490 0.5952
0.6524 35.0 980 0.7508 0.6667
0.5325 36.0 1008 0.9344 0.6667
0.476 37.0 1036 1.0580 0.5952
0.4941 38.0 1064 0.9380 0.7143
0.4232 39.0 1092 1.0384 0.5476
0.4302 40.0 1120 1.0844 0.6190
0.4057 41.0 1148 1.3995 0.5952
0.3483 42.0 1176 1.4823 0.5476
0.3043 43.0 1204 1.2186 0.6667
0.2598 44.0 1232 1.3028 0.5952
0.2113 45.0 1260 1.5042 0.6190
0.2104 46.0 1288 1.6174 0.5952
0.1769 47.0 1316 1.5011 0.6429
0.1341 48.0 1344 1.6784 0.5714
0.1239 49.0 1372 1.6694 0.5952
0.1545 50.0 1400 1.6694 0.5952

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0