hkivancoral's picture
End of training
27cafee
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2857142857142857

hushem_5x_deit_small_sgd_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4657
  • Accuracy: 0.2857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5422 1.0 28 1.4834 0.2619
1.6237 2.0 56 1.4826 0.2619
1.5562 3.0 84 1.4817 0.2619
1.5833 4.0 112 1.4810 0.2619
1.5467 5.0 140 1.4803 0.2619
1.5372 6.0 168 1.4795 0.2857
1.5683 7.0 196 1.4788 0.2857
1.5057 8.0 224 1.4781 0.2857
1.5994 9.0 252 1.4774 0.2857
1.5076 10.0 280 1.4768 0.2857
1.5466 11.0 308 1.4762 0.2857
1.544 12.0 336 1.4756 0.2857
1.5866 13.0 364 1.4750 0.2857
1.5384 14.0 392 1.4744 0.2857
1.6111 15.0 420 1.4739 0.2857
1.5625 16.0 448 1.4733 0.2857
1.547 17.0 476 1.4728 0.2857
1.5362 18.0 504 1.4723 0.2857
1.5318 19.0 532 1.4718 0.2857
1.5453 20.0 560 1.4714 0.2857
1.5434 21.0 588 1.4709 0.2857
1.548 22.0 616 1.4705 0.2857
1.5105 23.0 644 1.4701 0.2857
1.5176 24.0 672 1.4697 0.2857
1.5194 25.0 700 1.4694 0.2857
1.5543 26.0 728 1.4690 0.2857
1.5727 27.0 756 1.4687 0.2857
1.5476 28.0 784 1.4684 0.2857
1.5163 29.0 812 1.4681 0.2857
1.4767 30.0 840 1.4678 0.2857
1.5623 31.0 868 1.4676 0.2857
1.4924 32.0 896 1.4674 0.2857
1.5673 33.0 924 1.4672 0.2857
1.4842 34.0 952 1.4670 0.2857
1.4908 35.0 980 1.4668 0.2857
1.5184 36.0 1008 1.4666 0.2857
1.5315 37.0 1036 1.4664 0.2857
1.4892 38.0 1064 1.4663 0.2857
1.5241 39.0 1092 1.4662 0.2857
1.5587 40.0 1120 1.4661 0.2857
1.5867 41.0 1148 1.4660 0.2857
1.5357 42.0 1176 1.4659 0.2857
1.479 43.0 1204 1.4659 0.2857
1.4798 44.0 1232 1.4658 0.2857
1.5998 45.0 1260 1.4658 0.2857
1.5487 46.0 1288 1.4658 0.2857
1.5234 47.0 1316 1.4657 0.2857
1.5142 48.0 1344 1.4657 0.2857
1.5259 49.0 1372 1.4657 0.2857
1.5344 50.0 1400 1.4657 0.2857

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0