hkivancoral's picture
End of training
b09fe1d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2558139534883721

hushem_5x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4406
  • Accuracy: 0.2558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5476 1.0 28 1.6881 0.2791
1.5009 2.0 56 1.6672 0.2791
1.493 3.0 84 1.6491 0.2791
1.4757 4.0 112 1.6326 0.2791
1.4183 5.0 140 1.6168 0.2791
1.4727 6.0 168 1.6027 0.2791
1.5064 7.0 196 1.5899 0.2791
1.4575 8.0 224 1.5786 0.2791
1.4566 9.0 252 1.5679 0.3023
1.4332 10.0 280 1.5586 0.3023
1.4461 11.0 308 1.5502 0.3023
1.4527 12.0 336 1.5422 0.3023
1.4102 13.0 364 1.5344 0.3023
1.4234 14.0 392 1.5271 0.3023
1.4638 15.0 420 1.5205 0.3023
1.4171 16.0 448 1.5148 0.3023
1.3787 17.0 476 1.5087 0.2791
1.4195 18.0 504 1.5032 0.2791
1.3909 19.0 532 1.4981 0.3256
1.4469 20.0 560 1.4935 0.3023
1.382 21.0 588 1.4891 0.3023
1.3548 22.0 616 1.4852 0.3023
1.4115 23.0 644 1.4815 0.3023
1.3595 24.0 672 1.4779 0.2791
1.4648 25.0 700 1.4744 0.2791
1.3584 26.0 728 1.4712 0.2791
1.3694 27.0 756 1.4682 0.2791
1.3704 28.0 784 1.4656 0.2791
1.3747 29.0 812 1.4631 0.2791
1.3528 30.0 840 1.4609 0.2791
1.3372 31.0 868 1.4586 0.2791
1.3782 32.0 896 1.4565 0.2791
1.3746 33.0 924 1.4545 0.2791
1.3597 34.0 952 1.4525 0.2791
1.3491 35.0 980 1.4509 0.2791
1.3872 36.0 1008 1.4493 0.2791
1.3595 37.0 1036 1.4478 0.2791
1.3401 38.0 1064 1.4465 0.2791
1.3573 39.0 1092 1.4454 0.2791
1.3488 40.0 1120 1.4444 0.2791
1.3842 41.0 1148 1.4435 0.2791
1.3433 42.0 1176 1.4428 0.2558
1.3592 43.0 1204 1.4421 0.2558
1.3773 44.0 1232 1.4415 0.2558
1.3285 45.0 1260 1.4411 0.2558
1.3374 46.0 1288 1.4408 0.2558
1.3383 47.0 1316 1.4407 0.2558
1.3567 48.0 1344 1.4406 0.2558
1.3494 49.0 1372 1.4406 0.2558
1.2617 50.0 1400 1.4406 0.2558

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0