metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_beit_large_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8535773710482529
smids_10x_beit_large_adamax_001_fold2
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4058
- Accuracy: 0.8536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6414 | 1.0 | 750 | 0.6828 | 0.6639 |
0.5428 | 2.0 | 1500 | 0.5438 | 0.7754 |
0.4614 | 3.0 | 2250 | 0.4523 | 0.8336 |
0.4233 | 4.0 | 3000 | 0.4215 | 0.8236 |
0.4304 | 5.0 | 3750 | 0.4599 | 0.7903 |
0.3335 | 6.0 | 4500 | 0.4118 | 0.8336 |
0.3481 | 7.0 | 5250 | 0.4939 | 0.8253 |
0.3092 | 8.0 | 6000 | 0.4308 | 0.8486 |
0.2568 | 9.0 | 6750 | 0.4756 | 0.8353 |
0.331 | 10.0 | 7500 | 0.4715 | 0.8619 |
0.2403 | 11.0 | 8250 | 0.5349 | 0.8469 |
0.2162 | 12.0 | 9000 | 0.5922 | 0.8136 |
0.2489 | 13.0 | 9750 | 0.5818 | 0.8419 |
0.0972 | 14.0 | 10500 | 0.6218 | 0.8419 |
0.1212 | 15.0 | 11250 | 0.5371 | 0.8436 |
0.1175 | 16.0 | 12000 | 0.6818 | 0.8286 |
0.1011 | 17.0 | 12750 | 0.8719 | 0.8120 |
0.179 | 18.0 | 13500 | 0.7106 | 0.8486 |
0.1325 | 19.0 | 14250 | 0.6119 | 0.8552 |
0.111 | 20.0 | 15000 | 0.7905 | 0.8552 |
0.0431 | 21.0 | 15750 | 0.8636 | 0.8469 |
0.0973 | 22.0 | 16500 | 0.9921 | 0.8403 |
0.0529 | 23.0 | 17250 | 0.7563 | 0.8536 |
0.1212 | 24.0 | 18000 | 1.1228 | 0.8103 |
0.0377 | 25.0 | 18750 | 1.0572 | 0.8386 |
0.035 | 26.0 | 19500 | 0.8767 | 0.8536 |
0.0591 | 27.0 | 20250 | 0.9535 | 0.8652 |
0.0188 | 28.0 | 21000 | 1.1035 | 0.8536 |
0.0402 | 29.0 | 21750 | 1.1575 | 0.8586 |
0.0333 | 30.0 | 22500 | 1.1473 | 0.8669 |
0.0255 | 31.0 | 23250 | 1.0948 | 0.8469 |
0.0283 | 32.0 | 24000 | 1.4345 | 0.8419 |
0.0262 | 33.0 | 24750 | 1.1277 | 0.8552 |
0.0004 | 34.0 | 25500 | 1.2002 | 0.8519 |
0.0058 | 35.0 | 26250 | 1.1085 | 0.8586 |
0.0265 | 36.0 | 27000 | 1.2506 | 0.8436 |
0.0298 | 37.0 | 27750 | 1.1890 | 0.8602 |
0.0146 | 38.0 | 28500 | 1.5719 | 0.8486 |
0.0266 | 39.0 | 29250 | 1.2137 | 0.8486 |
0.0079 | 40.0 | 30000 | 1.2207 | 0.8586 |
0.0077 | 41.0 | 30750 | 1.1783 | 0.8636 |
0.0004 | 42.0 | 31500 | 1.2606 | 0.8552 |
0.0014 | 43.0 | 32250 | 1.6455 | 0.8453 |
0.0004 | 44.0 | 33000 | 1.4264 | 0.8436 |
0.015 | 45.0 | 33750 | 1.4403 | 0.8536 |
0.0002 | 46.0 | 34500 | 1.2419 | 0.8552 |
0.002 | 47.0 | 35250 | 1.3338 | 0.8536 |
0.0101 | 48.0 | 36000 | 1.5464 | 0.8469 |
0.0086 | 49.0 | 36750 | 1.3979 | 0.8536 |
0.0061 | 50.0 | 37500 | 1.4058 | 0.8536 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2