hkivancoral's picture
End of training
8256304
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8535773710482529

smids_10x_beit_large_adamax_001_fold2

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4058
  • Accuracy: 0.8536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6414 1.0 750 0.6828 0.6639
0.5428 2.0 1500 0.5438 0.7754
0.4614 3.0 2250 0.4523 0.8336
0.4233 4.0 3000 0.4215 0.8236
0.4304 5.0 3750 0.4599 0.7903
0.3335 6.0 4500 0.4118 0.8336
0.3481 7.0 5250 0.4939 0.8253
0.3092 8.0 6000 0.4308 0.8486
0.2568 9.0 6750 0.4756 0.8353
0.331 10.0 7500 0.4715 0.8619
0.2403 11.0 8250 0.5349 0.8469
0.2162 12.0 9000 0.5922 0.8136
0.2489 13.0 9750 0.5818 0.8419
0.0972 14.0 10500 0.6218 0.8419
0.1212 15.0 11250 0.5371 0.8436
0.1175 16.0 12000 0.6818 0.8286
0.1011 17.0 12750 0.8719 0.8120
0.179 18.0 13500 0.7106 0.8486
0.1325 19.0 14250 0.6119 0.8552
0.111 20.0 15000 0.7905 0.8552
0.0431 21.0 15750 0.8636 0.8469
0.0973 22.0 16500 0.9921 0.8403
0.0529 23.0 17250 0.7563 0.8536
0.1212 24.0 18000 1.1228 0.8103
0.0377 25.0 18750 1.0572 0.8386
0.035 26.0 19500 0.8767 0.8536
0.0591 27.0 20250 0.9535 0.8652
0.0188 28.0 21000 1.1035 0.8536
0.0402 29.0 21750 1.1575 0.8586
0.0333 30.0 22500 1.1473 0.8669
0.0255 31.0 23250 1.0948 0.8469
0.0283 32.0 24000 1.4345 0.8419
0.0262 33.0 24750 1.1277 0.8552
0.0004 34.0 25500 1.2002 0.8519
0.0058 35.0 26250 1.1085 0.8586
0.0265 36.0 27000 1.2506 0.8436
0.0298 37.0 27750 1.1890 0.8602
0.0146 38.0 28500 1.5719 0.8486
0.0266 39.0 29250 1.2137 0.8486
0.0079 40.0 30000 1.2207 0.8586
0.0077 41.0 30750 1.1783 0.8636
0.0004 42.0 31500 1.2606 0.8552
0.0014 43.0 32250 1.6455 0.8453
0.0004 44.0 33000 1.4264 0.8436
0.015 45.0 33750 1.4403 0.8536
0.0002 46.0 34500 1.2419 0.8552
0.002 47.0 35250 1.3338 0.8536
0.0101 48.0 36000 1.5464 0.8469
0.0086 49.0 36750 1.3979 0.8536
0.0061 50.0 37500 1.4058 0.8536

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2