metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_tiny_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8948247078464107
smids_10x_deit_tiny_adamax_001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1377
- Accuracy: 0.8948
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.387 | 1.0 | 751 | 0.3856 | 0.8447 |
0.2275 | 2.0 | 1502 | 0.3799 | 0.8497 |
0.1732 | 3.0 | 2253 | 0.3628 | 0.8898 |
0.1418 | 4.0 | 3004 | 0.3720 | 0.8848 |
0.1851 | 5.0 | 3755 | 0.4163 | 0.8497 |
0.1168 | 6.0 | 4506 | 0.4228 | 0.8915 |
0.1217 | 7.0 | 5257 | 0.4050 | 0.8965 |
0.0972 | 8.0 | 6008 | 0.4659 | 0.8881 |
0.0717 | 9.0 | 6759 | 0.4692 | 0.8848 |
0.0615 | 10.0 | 7510 | 0.5939 | 0.8748 |
0.0582 | 11.0 | 8261 | 0.5202 | 0.8898 |
0.0569 | 12.0 | 9012 | 0.5681 | 0.8982 |
0.0142 | 13.0 | 9763 | 0.7223 | 0.8815 |
0.0849 | 14.0 | 10514 | 0.6292 | 0.8948 |
0.0289 | 15.0 | 11265 | 0.7113 | 0.8898 |
0.0438 | 16.0 | 12016 | 0.6702 | 0.8982 |
0.0561 | 17.0 | 12767 | 0.7629 | 0.8765 |
0.0013 | 18.0 | 13518 | 0.7639 | 0.8865 |
0.0173 | 19.0 | 14269 | 0.6756 | 0.8965 |
0.0044 | 20.0 | 15020 | 0.7365 | 0.8965 |
0.013 | 21.0 | 15771 | 0.8044 | 0.8831 |
0.0056 | 22.0 | 16522 | 0.7938 | 0.8915 |
0.0006 | 23.0 | 17273 | 0.8954 | 0.8848 |
0.0157 | 24.0 | 18024 | 0.8083 | 0.8998 |
0.0002 | 25.0 | 18775 | 0.8156 | 0.8965 |
0.0001 | 26.0 | 19526 | 0.8204 | 0.8982 |
0.0087 | 27.0 | 20277 | 0.8556 | 0.8948 |
0.0001 | 28.0 | 21028 | 0.8189 | 0.9048 |
0.0132 | 29.0 | 21779 | 0.8401 | 0.9065 |
0.0001 | 30.0 | 22530 | 0.9274 | 0.8915 |
0.0 | 31.0 | 23281 | 0.9668 | 0.8965 |
0.0153 | 32.0 | 24032 | 0.9746 | 0.8932 |
0.0 | 33.0 | 24783 | 1.0269 | 0.8881 |
0.0 | 34.0 | 25534 | 1.0125 | 0.8948 |
0.0 | 35.0 | 26285 | 1.0419 | 0.8898 |
0.0003 | 36.0 | 27036 | 1.0764 | 0.8898 |
0.0 | 37.0 | 27787 | 1.0824 | 0.8915 |
0.0 | 38.0 | 28538 | 1.0882 | 0.8898 |
0.0 | 39.0 | 29289 | 1.0563 | 0.8932 |
0.0 | 40.0 | 30040 | 1.0771 | 0.8915 |
0.0 | 41.0 | 30791 | 1.0705 | 0.8948 |
0.0 | 42.0 | 31542 | 1.0752 | 0.8932 |
0.0 | 43.0 | 32293 | 1.1011 | 0.8948 |
0.0 | 44.0 | 33044 | 1.1049 | 0.8948 |
0.0 | 45.0 | 33795 | 1.1132 | 0.8948 |
0.0 | 46.0 | 34546 | 1.1208 | 0.8965 |
0.0 | 47.0 | 35297 | 1.1280 | 0.8948 |
0.0 | 48.0 | 36048 | 1.1328 | 0.8948 |
0.0 | 49.0 | 36799 | 1.1361 | 0.8948 |
0.0 | 50.0 | 37550 | 1.1377 | 0.8948 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2