hkivancoral's picture
End of training
6d2572c
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8948247078464107

smids_10x_deit_tiny_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1377
  • Accuracy: 0.8948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.387 1.0 751 0.3856 0.8447
0.2275 2.0 1502 0.3799 0.8497
0.1732 3.0 2253 0.3628 0.8898
0.1418 4.0 3004 0.3720 0.8848
0.1851 5.0 3755 0.4163 0.8497
0.1168 6.0 4506 0.4228 0.8915
0.1217 7.0 5257 0.4050 0.8965
0.0972 8.0 6008 0.4659 0.8881
0.0717 9.0 6759 0.4692 0.8848
0.0615 10.0 7510 0.5939 0.8748
0.0582 11.0 8261 0.5202 0.8898
0.0569 12.0 9012 0.5681 0.8982
0.0142 13.0 9763 0.7223 0.8815
0.0849 14.0 10514 0.6292 0.8948
0.0289 15.0 11265 0.7113 0.8898
0.0438 16.0 12016 0.6702 0.8982
0.0561 17.0 12767 0.7629 0.8765
0.0013 18.0 13518 0.7639 0.8865
0.0173 19.0 14269 0.6756 0.8965
0.0044 20.0 15020 0.7365 0.8965
0.013 21.0 15771 0.8044 0.8831
0.0056 22.0 16522 0.7938 0.8915
0.0006 23.0 17273 0.8954 0.8848
0.0157 24.0 18024 0.8083 0.8998
0.0002 25.0 18775 0.8156 0.8965
0.0001 26.0 19526 0.8204 0.8982
0.0087 27.0 20277 0.8556 0.8948
0.0001 28.0 21028 0.8189 0.9048
0.0132 29.0 21779 0.8401 0.9065
0.0001 30.0 22530 0.9274 0.8915
0.0 31.0 23281 0.9668 0.8965
0.0153 32.0 24032 0.9746 0.8932
0.0 33.0 24783 1.0269 0.8881
0.0 34.0 25534 1.0125 0.8948
0.0 35.0 26285 1.0419 0.8898
0.0003 36.0 27036 1.0764 0.8898
0.0 37.0 27787 1.0824 0.8915
0.0 38.0 28538 1.0882 0.8898
0.0 39.0 29289 1.0563 0.8932
0.0 40.0 30040 1.0771 0.8915
0.0 41.0 30791 1.0705 0.8948
0.0 42.0 31542 1.0752 0.8932
0.0 43.0 32293 1.1011 0.8948
0.0 44.0 33044 1.1049 0.8948
0.0 45.0 33795 1.1132 0.8948
0.0 46.0 34546 1.1208 0.8965
0.0 47.0 35297 1.1280 0.8948
0.0 48.0 36048 1.1328 0.8948
0.0 49.0 36799 1.1361 0.8948
0.0 50.0 37550 1.1377 0.8948

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2