hkivancoral's picture
End of training
933b17f
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9001663893510815

smids_10x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0691
  • Accuracy: 0.9002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3362 1.0 750 0.3519 0.8652
0.2971 2.0 1500 0.3131 0.8918
0.1771 3.0 2250 0.2717 0.8885
0.2985 4.0 3000 0.3652 0.8652
0.1399 5.0 3750 0.3216 0.9018
0.1317 6.0 4500 0.3948 0.8802
0.1309 7.0 5250 0.3860 0.8902
0.1165 8.0 6000 0.4557 0.8852
0.0308 9.0 6750 0.5032 0.8686
0.0315 10.0 7500 0.4981 0.8769
0.0974 11.0 8250 0.6363 0.8769
0.1017 12.0 9000 0.5021 0.8869
0.0475 13.0 9750 0.5896 0.8885
0.0086 14.0 10500 0.6931 0.8918
0.0301 15.0 11250 0.6531 0.8902
0.0049 16.0 12000 0.7157 0.8819
0.0307 17.0 12750 0.7054 0.8935
0.0113 18.0 13500 0.7646 0.8869
0.0492 19.0 14250 0.7424 0.8885
0.0093 20.0 15000 0.6366 0.8952
0.011 21.0 15750 0.8426 0.8885
0.0191 22.0 16500 0.7557 0.8952
0.0047 23.0 17250 0.7578 0.8885
0.0163 24.0 18000 0.8275 0.8902
0.0001 25.0 18750 0.8176 0.8935
0.0023 26.0 19500 0.8054 0.8968
0.0181 27.0 20250 0.8270 0.8952
0.0 28.0 21000 0.8173 0.9035
0.0001 29.0 21750 0.8348 0.9018
0.0 30.0 22500 0.8105 0.9101
0.0 31.0 23250 0.7837 0.9118
0.0 32.0 24000 0.9929 0.8935
0.0 33.0 24750 0.8103 0.9085
0.0 34.0 25500 0.8769 0.9035
0.0 35.0 26250 0.8987 0.8985
0.0 36.0 27000 1.0129 0.9002
0.0053 37.0 27750 0.9506 0.9068
0.0 38.0 28500 1.0495 0.8935
0.0 39.0 29250 0.9869 0.9018
0.0 40.0 30000 1.0087 0.8968
0.0 41.0 30750 1.0348 0.8985
0.0 42.0 31500 1.0299 0.8985
0.0 43.0 32250 1.0437 0.8968
0.0 44.0 33000 1.0468 0.8985
0.0028 45.0 33750 1.0539 0.9002
0.0 46.0 34500 1.0588 0.9002
0.0 47.0 35250 1.0567 0.9002
0.0 48.0 36000 1.0631 0.9002
0.0 49.0 36750 1.0673 0.9002
0.0 50.0 37500 1.0691 0.9002

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2