hkivancoral's picture
End of training
9b1fec2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5041597337770383

smids_1x_deit_small_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0336
  • Accuracy: 0.5042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0925 1.0 75 1.0713 0.4343
1.0735 2.0 150 1.0692 0.4343
1.0724 3.0 225 1.0673 0.4393
1.0873 4.0 300 1.0654 0.4426
1.1019 5.0 375 1.0637 0.4426
1.0577 6.0 450 1.0620 0.4459
1.0861 7.0 525 1.0604 0.4493
1.0644 8.0 600 1.0588 0.4542
1.0424 9.0 675 1.0573 0.4509
1.0503 10.0 750 1.0559 0.4509
1.0641 11.0 825 1.0545 0.4493
1.0679 12.0 900 1.0532 0.4526
1.0629 13.0 975 1.0520 0.4542
1.0438 14.0 1050 1.0508 0.4542
1.061 15.0 1125 1.0497 0.4509
1.0498 16.0 1200 1.0486 0.4509
1.0521 17.0 1275 1.0475 0.4559
1.0469 18.0 1350 1.0466 0.4576
1.047 19.0 1425 1.0456 0.4609
1.0592 20.0 1500 1.0447 0.4659
1.0668 21.0 1575 1.0439 0.4709
1.0281 22.0 1650 1.0431 0.4725
1.0356 23.0 1725 1.0423 0.4775
1.026 24.0 1800 1.0416 0.4775
1.0466 25.0 1875 1.0409 0.4792
1.0451 26.0 1950 1.0402 0.4809
1.0338 27.0 2025 1.0396 0.4859
1.0199 28.0 2100 1.0390 0.4842
1.0289 29.0 2175 1.0384 0.4875
1.0316 30.0 2250 1.0379 0.4908
1.0446 31.0 2325 1.0374 0.4925
1.0407 32.0 2400 1.0369 0.4925
1.0163 33.0 2475 1.0365 0.4925
1.0508 34.0 2550 1.0361 0.4925
1.024 35.0 2625 1.0358 0.4942
1.0435 36.0 2700 1.0354 0.4958
1.0618 37.0 2775 1.0351 0.4958
1.0365 38.0 2850 1.0349 0.4975
1.0269 39.0 2925 1.0346 0.4992
1.0291 40.0 3000 1.0344 0.5008
1.0505 41.0 3075 1.0342 0.5008
1.0316 42.0 3150 1.0340 0.5008
1.0295 43.0 3225 1.0339 0.5008
1.049 44.0 3300 1.0338 0.5008
1.0556 45.0 3375 1.0337 0.5008
1.0458 46.0 3450 1.0336 0.5008
1.0348 47.0 3525 1.0336 0.5008
1.0496 48.0 3600 1.0336 0.5025
1.0321 49.0 3675 1.0336 0.5042
1.0497 50.0 3750 1.0336 0.5042

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0