metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_sgd_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.47
smids_1x_deit_small_sgd_00001_fold3
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0491
- Accuracy: 0.47
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0941 | 1.0 | 75 | 1.0867 | 0.3867 |
1.1031 | 2.0 | 150 | 1.0847 | 0.3883 |
1.0678 | 3.0 | 225 | 1.0827 | 0.39 |
1.0493 | 4.0 | 300 | 1.0809 | 0.395 |
1.0783 | 5.0 | 375 | 1.0791 | 0.4017 |
1.0689 | 6.0 | 450 | 1.0774 | 0.4083 |
1.0606 | 7.0 | 525 | 1.0758 | 0.4117 |
1.0286 | 8.0 | 600 | 1.0743 | 0.4117 |
1.0504 | 9.0 | 675 | 1.0729 | 0.415 |
1.0349 | 10.0 | 750 | 1.0714 | 0.415 |
1.0372 | 11.0 | 825 | 1.0701 | 0.4167 |
1.0665 | 12.0 | 900 | 1.0688 | 0.4233 |
1.0542 | 13.0 | 975 | 1.0676 | 0.4233 |
1.0662 | 14.0 | 1050 | 1.0664 | 0.4267 |
1.0308 | 15.0 | 1125 | 1.0653 | 0.4283 |
1.0599 | 16.0 | 1200 | 1.0642 | 0.4283 |
1.0281 | 17.0 | 1275 | 1.0632 | 0.43 |
1.0433 | 18.0 | 1350 | 1.0622 | 0.4383 |
1.0474 | 19.0 | 1425 | 1.0612 | 0.4433 |
1.0662 | 20.0 | 1500 | 1.0603 | 0.4467 |
1.0359 | 21.0 | 1575 | 1.0595 | 0.4417 |
1.0248 | 22.0 | 1650 | 1.0587 | 0.4417 |
1.0401 | 23.0 | 1725 | 1.0579 | 0.445 |
1.0329 | 24.0 | 1800 | 1.0572 | 0.4467 |
1.053 | 25.0 | 1875 | 1.0565 | 0.4533 |
1.0305 | 26.0 | 1950 | 1.0558 | 0.4533 |
1.0308 | 27.0 | 2025 | 1.0552 | 0.455 |
1.0523 | 28.0 | 2100 | 1.0546 | 0.4567 |
1.0577 | 29.0 | 2175 | 1.0541 | 0.4583 |
1.0456 | 30.0 | 2250 | 1.0535 | 0.4583 |
1.0268 | 31.0 | 2325 | 1.0531 | 0.4583 |
1.0567 | 32.0 | 2400 | 1.0526 | 0.4617 |
1.0191 | 33.0 | 2475 | 1.0522 | 0.465 |
1.0381 | 34.0 | 2550 | 1.0518 | 0.47 |
1.0572 | 35.0 | 2625 | 1.0514 | 0.47 |
1.0481 | 36.0 | 2700 | 1.0511 | 0.47 |
1.022 | 37.0 | 2775 | 1.0508 | 0.4683 |
1.0366 | 38.0 | 2850 | 1.0505 | 0.4683 |
1.029 | 39.0 | 2925 | 1.0502 | 0.4683 |
1.0115 | 40.0 | 3000 | 1.0500 | 0.47 |
1.0512 | 41.0 | 3075 | 1.0498 | 0.47 |
1.0219 | 42.0 | 3150 | 1.0496 | 0.47 |
1.046 | 43.0 | 3225 | 1.0495 | 0.47 |
1.0476 | 44.0 | 3300 | 1.0494 | 0.47 |
1.0512 | 45.0 | 3375 | 1.0493 | 0.47 |
1.0286 | 46.0 | 3450 | 1.0492 | 0.47 |
1.0307 | 47.0 | 3525 | 1.0491 | 0.47 |
1.0266 | 48.0 | 3600 | 1.0491 | 0.47 |
1.0403 | 49.0 | 3675 | 1.0491 | 0.47 |
1.011 | 50.0 | 3750 | 1.0491 | 0.47 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0