hkivancoral's picture
End of training
972b5fe
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.47

smids_1x_deit_small_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0491
  • Accuracy: 0.47

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0941 1.0 75 1.0867 0.3867
1.1031 2.0 150 1.0847 0.3883
1.0678 3.0 225 1.0827 0.39
1.0493 4.0 300 1.0809 0.395
1.0783 5.0 375 1.0791 0.4017
1.0689 6.0 450 1.0774 0.4083
1.0606 7.0 525 1.0758 0.4117
1.0286 8.0 600 1.0743 0.4117
1.0504 9.0 675 1.0729 0.415
1.0349 10.0 750 1.0714 0.415
1.0372 11.0 825 1.0701 0.4167
1.0665 12.0 900 1.0688 0.4233
1.0542 13.0 975 1.0676 0.4233
1.0662 14.0 1050 1.0664 0.4267
1.0308 15.0 1125 1.0653 0.4283
1.0599 16.0 1200 1.0642 0.4283
1.0281 17.0 1275 1.0632 0.43
1.0433 18.0 1350 1.0622 0.4383
1.0474 19.0 1425 1.0612 0.4433
1.0662 20.0 1500 1.0603 0.4467
1.0359 21.0 1575 1.0595 0.4417
1.0248 22.0 1650 1.0587 0.4417
1.0401 23.0 1725 1.0579 0.445
1.0329 24.0 1800 1.0572 0.4467
1.053 25.0 1875 1.0565 0.4533
1.0305 26.0 1950 1.0558 0.4533
1.0308 27.0 2025 1.0552 0.455
1.0523 28.0 2100 1.0546 0.4567
1.0577 29.0 2175 1.0541 0.4583
1.0456 30.0 2250 1.0535 0.4583
1.0268 31.0 2325 1.0531 0.4583
1.0567 32.0 2400 1.0526 0.4617
1.0191 33.0 2475 1.0522 0.465
1.0381 34.0 2550 1.0518 0.47
1.0572 35.0 2625 1.0514 0.47
1.0481 36.0 2700 1.0511 0.47
1.022 37.0 2775 1.0508 0.4683
1.0366 38.0 2850 1.0505 0.4683
1.029 39.0 2925 1.0502 0.4683
1.0115 40.0 3000 1.0500 0.47
1.0512 41.0 3075 1.0498 0.47
1.0219 42.0 3150 1.0496 0.47
1.046 43.0 3225 1.0495 0.47
1.0476 44.0 3300 1.0494 0.47
1.0512 45.0 3375 1.0493 0.47
1.0286 46.0 3450 1.0492 0.47
1.0307 47.0 3525 1.0491 0.47
1.0266 48.0 3600 1.0491 0.47
1.0403 49.0 3675 1.0491 0.47
1.011 50.0 3750 1.0491 0.47

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0