metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_sgd_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5033333333333333
smids_1x_deit_small_sgd_00001_fold4
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0280
- Accuracy: 0.5033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0927 | 1.0 | 75 | 1.0671 | 0.43 |
1.0963 | 2.0 | 150 | 1.0650 | 0.4317 |
1.0708 | 3.0 | 225 | 1.0630 | 0.43 |
1.0487 | 4.0 | 300 | 1.0611 | 0.4317 |
1.0896 | 5.0 | 375 | 1.0592 | 0.435 |
1.0673 | 6.0 | 450 | 1.0575 | 0.435 |
1.067 | 7.0 | 525 | 1.0559 | 0.4367 |
1.0743 | 8.0 | 600 | 1.0543 | 0.4417 |
1.0607 | 9.0 | 675 | 1.0527 | 0.445 |
1.058 | 10.0 | 750 | 1.0512 | 0.4483 |
1.0598 | 11.0 | 825 | 1.0498 | 0.4483 |
1.0745 | 12.0 | 900 | 1.0485 | 0.45 |
1.0539 | 13.0 | 975 | 1.0472 | 0.45 |
1.0532 | 14.0 | 1050 | 1.0460 | 0.455 |
1.0553 | 15.0 | 1125 | 1.0448 | 0.4567 |
1.0605 | 16.0 | 1200 | 1.0437 | 0.465 |
1.0719 | 17.0 | 1275 | 1.0426 | 0.4667 |
1.0217 | 18.0 | 1350 | 1.0415 | 0.465 |
1.0569 | 19.0 | 1425 | 1.0406 | 0.4617 |
1.0748 | 20.0 | 1500 | 1.0396 | 0.4633 |
1.0485 | 21.0 | 1575 | 1.0388 | 0.4633 |
1.0436 | 22.0 | 1650 | 1.0379 | 0.465 |
1.0728 | 23.0 | 1725 | 1.0371 | 0.47 |
1.0532 | 24.0 | 1800 | 1.0364 | 0.475 |
1.0361 | 25.0 | 1875 | 1.0357 | 0.4767 |
1.0392 | 26.0 | 1950 | 1.0350 | 0.475 |
1.029 | 27.0 | 2025 | 1.0343 | 0.4767 |
1.0447 | 28.0 | 2100 | 1.0337 | 0.4733 |
1.0454 | 29.0 | 2175 | 1.0332 | 0.4783 |
1.0483 | 30.0 | 2250 | 1.0326 | 0.4783 |
1.0373 | 31.0 | 2325 | 1.0321 | 0.4833 |
1.0733 | 32.0 | 2400 | 1.0316 | 0.485 |
1.0534 | 33.0 | 2475 | 1.0312 | 0.4883 |
1.043 | 34.0 | 2550 | 1.0308 | 0.4883 |
1.0232 | 35.0 | 2625 | 1.0304 | 0.4883 |
1.0268 | 36.0 | 2700 | 1.0300 | 0.4917 |
1.0287 | 37.0 | 2775 | 1.0297 | 0.495 |
1.0612 | 38.0 | 2850 | 1.0294 | 0.4967 |
1.0429 | 39.0 | 2925 | 1.0292 | 0.4983 |
1.0312 | 40.0 | 3000 | 1.0290 | 0.4983 |
1.0436 | 41.0 | 3075 | 1.0287 | 0.5 |
1.0377 | 42.0 | 3150 | 1.0286 | 0.5 |
1.046 | 43.0 | 3225 | 1.0284 | 0.5017 |
1.0455 | 44.0 | 3300 | 1.0283 | 0.5033 |
1.0485 | 45.0 | 3375 | 1.0282 | 0.5033 |
1.0401 | 46.0 | 3450 | 1.0281 | 0.5033 |
1.0459 | 47.0 | 3525 | 1.0280 | 0.5033 |
1.0359 | 48.0 | 3600 | 1.0280 | 0.5033 |
1.0504 | 49.0 | 3675 | 1.0280 | 0.5033 |
1.0198 | 50.0 | 3750 | 1.0280 | 0.5033 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0