hkivancoral's picture
End of training
144462e
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5033333333333333

smids_1x_deit_small_sgd_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0280
  • Accuracy: 0.5033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0927 1.0 75 1.0671 0.43
1.0963 2.0 150 1.0650 0.4317
1.0708 3.0 225 1.0630 0.43
1.0487 4.0 300 1.0611 0.4317
1.0896 5.0 375 1.0592 0.435
1.0673 6.0 450 1.0575 0.435
1.067 7.0 525 1.0559 0.4367
1.0743 8.0 600 1.0543 0.4417
1.0607 9.0 675 1.0527 0.445
1.058 10.0 750 1.0512 0.4483
1.0598 11.0 825 1.0498 0.4483
1.0745 12.0 900 1.0485 0.45
1.0539 13.0 975 1.0472 0.45
1.0532 14.0 1050 1.0460 0.455
1.0553 15.0 1125 1.0448 0.4567
1.0605 16.0 1200 1.0437 0.465
1.0719 17.0 1275 1.0426 0.4667
1.0217 18.0 1350 1.0415 0.465
1.0569 19.0 1425 1.0406 0.4617
1.0748 20.0 1500 1.0396 0.4633
1.0485 21.0 1575 1.0388 0.4633
1.0436 22.0 1650 1.0379 0.465
1.0728 23.0 1725 1.0371 0.47
1.0532 24.0 1800 1.0364 0.475
1.0361 25.0 1875 1.0357 0.4767
1.0392 26.0 1950 1.0350 0.475
1.029 27.0 2025 1.0343 0.4767
1.0447 28.0 2100 1.0337 0.4733
1.0454 29.0 2175 1.0332 0.4783
1.0483 30.0 2250 1.0326 0.4783
1.0373 31.0 2325 1.0321 0.4833
1.0733 32.0 2400 1.0316 0.485
1.0534 33.0 2475 1.0312 0.4883
1.043 34.0 2550 1.0308 0.4883
1.0232 35.0 2625 1.0304 0.4883
1.0268 36.0 2700 1.0300 0.4917
1.0287 37.0 2775 1.0297 0.495
1.0612 38.0 2850 1.0294 0.4967
1.0429 39.0 2925 1.0292 0.4983
1.0312 40.0 3000 1.0290 0.4983
1.0436 41.0 3075 1.0287 0.5
1.0377 42.0 3150 1.0286 0.5
1.046 43.0 3225 1.0284 0.5017
1.0455 44.0 3300 1.0283 0.5033
1.0485 45.0 3375 1.0282 0.5033
1.0401 46.0 3450 1.0281 0.5033
1.0459 47.0 3525 1.0280 0.5033
1.0359 48.0 3600 1.0280 0.5033
1.0504 49.0 3675 1.0280 0.5033
1.0198 50.0 3750 1.0280 0.5033

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0