metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_sgd_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.855
smids_1x_deit_small_sgd_001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3554
- Accuracy: 0.855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9725 | 1.0 | 75 | 0.9578 | 0.58 |
0.8549 | 2.0 | 150 | 0.8545 | 0.6367 |
0.7685 | 3.0 | 225 | 0.7653 | 0.6967 |
0.7189 | 4.0 | 300 | 0.6967 | 0.7383 |
0.6469 | 5.0 | 375 | 0.6428 | 0.7567 |
0.5993 | 6.0 | 450 | 0.5995 | 0.7667 |
0.5809 | 7.0 | 525 | 0.5645 | 0.7717 |
0.5382 | 8.0 | 600 | 0.5378 | 0.7817 |
0.5132 | 9.0 | 675 | 0.5146 | 0.7933 |
0.5002 | 10.0 | 750 | 0.4976 | 0.7817 |
0.5258 | 11.0 | 825 | 0.4771 | 0.8033 |
0.4262 | 12.0 | 900 | 0.4625 | 0.8183 |
0.4371 | 13.0 | 975 | 0.4503 | 0.8217 |
0.4112 | 14.0 | 1050 | 0.4406 | 0.8217 |
0.3773 | 15.0 | 1125 | 0.4328 | 0.8183 |
0.3566 | 16.0 | 1200 | 0.4255 | 0.82 |
0.3898 | 17.0 | 1275 | 0.4160 | 0.83 |
0.3699 | 18.0 | 1350 | 0.4107 | 0.8233 |
0.3811 | 19.0 | 1425 | 0.4043 | 0.84 |
0.3869 | 20.0 | 1500 | 0.4001 | 0.8317 |
0.363 | 21.0 | 1575 | 0.3965 | 0.8383 |
0.3336 | 22.0 | 1650 | 0.3912 | 0.8433 |
0.334 | 23.0 | 1725 | 0.3876 | 0.8433 |
0.3158 | 24.0 | 1800 | 0.3862 | 0.845 |
0.309 | 25.0 | 1875 | 0.3831 | 0.8433 |
0.3223 | 26.0 | 1950 | 0.3821 | 0.84 |
0.3225 | 27.0 | 2025 | 0.3783 | 0.8417 |
0.3412 | 28.0 | 2100 | 0.3753 | 0.845 |
0.3183 | 29.0 | 2175 | 0.3735 | 0.8433 |
0.3062 | 30.0 | 2250 | 0.3707 | 0.8417 |
0.2914 | 31.0 | 2325 | 0.3702 | 0.8417 |
0.2994 | 32.0 | 2400 | 0.3684 | 0.84 |
0.3197 | 33.0 | 2475 | 0.3663 | 0.8467 |
0.2992 | 34.0 | 2550 | 0.3643 | 0.85 |
0.3245 | 35.0 | 2625 | 0.3629 | 0.8517 |
0.2966 | 36.0 | 2700 | 0.3625 | 0.8483 |
0.2581 | 37.0 | 2775 | 0.3619 | 0.8467 |
0.3008 | 38.0 | 2850 | 0.3609 | 0.8483 |
0.2884 | 39.0 | 2925 | 0.3604 | 0.85 |
0.3019 | 40.0 | 3000 | 0.3593 | 0.85 |
0.3288 | 41.0 | 3075 | 0.3590 | 0.8517 |
0.3129 | 42.0 | 3150 | 0.3580 | 0.855 |
0.2899 | 43.0 | 3225 | 0.3573 | 0.855 |
0.2709 | 44.0 | 3300 | 0.3568 | 0.855 |
0.2859 | 45.0 | 3375 | 0.3565 | 0.8533 |
0.3026 | 46.0 | 3450 | 0.3561 | 0.8533 |
0.2643 | 47.0 | 3525 | 0.3557 | 0.855 |
0.2626 | 48.0 | 3600 | 0.3556 | 0.855 |
0.2672 | 49.0 | 3675 | 0.3555 | 0.855 |
0.2682 | 50.0 | 3750 | 0.3554 | 0.855 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0