hkivancoral's picture
End of training
5d8f89c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.855

smids_1x_deit_small_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3554
  • Accuracy: 0.855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9725 1.0 75 0.9578 0.58
0.8549 2.0 150 0.8545 0.6367
0.7685 3.0 225 0.7653 0.6967
0.7189 4.0 300 0.6967 0.7383
0.6469 5.0 375 0.6428 0.7567
0.5993 6.0 450 0.5995 0.7667
0.5809 7.0 525 0.5645 0.7717
0.5382 8.0 600 0.5378 0.7817
0.5132 9.0 675 0.5146 0.7933
0.5002 10.0 750 0.4976 0.7817
0.5258 11.0 825 0.4771 0.8033
0.4262 12.0 900 0.4625 0.8183
0.4371 13.0 975 0.4503 0.8217
0.4112 14.0 1050 0.4406 0.8217
0.3773 15.0 1125 0.4328 0.8183
0.3566 16.0 1200 0.4255 0.82
0.3898 17.0 1275 0.4160 0.83
0.3699 18.0 1350 0.4107 0.8233
0.3811 19.0 1425 0.4043 0.84
0.3869 20.0 1500 0.4001 0.8317
0.363 21.0 1575 0.3965 0.8383
0.3336 22.0 1650 0.3912 0.8433
0.334 23.0 1725 0.3876 0.8433
0.3158 24.0 1800 0.3862 0.845
0.309 25.0 1875 0.3831 0.8433
0.3223 26.0 1950 0.3821 0.84
0.3225 27.0 2025 0.3783 0.8417
0.3412 28.0 2100 0.3753 0.845
0.3183 29.0 2175 0.3735 0.8433
0.3062 30.0 2250 0.3707 0.8417
0.2914 31.0 2325 0.3702 0.8417
0.2994 32.0 2400 0.3684 0.84
0.3197 33.0 2475 0.3663 0.8467
0.2992 34.0 2550 0.3643 0.85
0.3245 35.0 2625 0.3629 0.8517
0.2966 36.0 2700 0.3625 0.8483
0.2581 37.0 2775 0.3619 0.8467
0.3008 38.0 2850 0.3609 0.8483
0.2884 39.0 2925 0.3604 0.85
0.3019 40.0 3000 0.3593 0.85
0.3288 41.0 3075 0.3590 0.8517
0.3129 42.0 3150 0.3580 0.855
0.2899 43.0 3225 0.3573 0.855
0.2709 44.0 3300 0.3568 0.855
0.2859 45.0 3375 0.3565 0.8533
0.3026 46.0 3450 0.3561 0.8533
0.2643 47.0 3525 0.3557 0.855
0.2626 48.0 3600 0.3556 0.855
0.2672 49.0 3675 0.3555 0.855
0.2682 50.0 3750 0.3554 0.855

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0