hkivancoral's picture
End of training
c504a84
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8336106489184693

smids_1x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3785
  • Accuracy: 0.8336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8106 1.0 75 0.7856 0.5657
0.8289 2.0 150 0.7551 0.7121
0.6607 3.0 225 0.6595 0.7288
0.5966 4.0 300 0.5724 0.7671
0.5316 5.0 375 0.5404 0.7854
0.3929 6.0 450 0.5052 0.7970
0.407 7.0 525 0.4685 0.8303
0.3944 8.0 600 0.4515 0.8236
0.2836 9.0 675 0.4807 0.8070
0.2744 10.0 750 0.4423 0.8469
0.2808 11.0 825 0.4896 0.7953
0.152 12.0 900 0.5241 0.8319
0.1786 13.0 975 0.4922 0.8486
0.1372 14.0 1050 0.6687 0.8220
0.1982 15.0 1125 0.7505 0.8253
0.1651 16.0 1200 0.8354 0.8236
0.1906 17.0 1275 1.1129 0.7737
0.0899 18.0 1350 1.0319 0.8003
0.0875 19.0 1425 1.0962 0.7987
0.0186 20.0 1500 0.9631 0.8270
0.0742 21.0 1575 1.2547 0.7887
0.0229 22.0 1650 0.9476 0.8303
0.0161 23.0 1725 1.3651 0.8070
0.0097 24.0 1800 1.0596 0.8286
0.0082 25.0 1875 0.9954 0.8386
0.0036 26.0 1950 0.9671 0.8353
0.0205 27.0 2025 1.0817 0.8253
0.0109 28.0 2100 0.9995 0.8353
0.007 29.0 2175 1.1573 0.8369
0.0048 30.0 2250 1.2320 0.8303
0.0312 31.0 2325 1.1062 0.8453
0.0003 32.0 2400 1.3037 0.8436
0.0002 33.0 2475 1.2278 0.8403
0.0041 34.0 2550 1.3384 0.8286
0.0096 35.0 2625 1.3396 0.8303
0.0049 36.0 2700 1.3638 0.8403
0.0054 37.0 2775 1.3303 0.8303
0.0 38.0 2850 1.3273 0.8303
0.0017 39.0 2925 1.3584 0.8336
0.0 40.0 3000 1.3526 0.8319
0.0031 41.0 3075 1.3529 0.8303
0.0029 42.0 3150 1.3744 0.8336
0.0052 43.0 3225 1.3603 0.8319
0.0041 44.0 3300 1.3711 0.8336
0.0 45.0 3375 1.3741 0.8353
0.0002 46.0 3450 1.3699 0.8336
0.0029 47.0 3525 1.3797 0.8336
0.0 48.0 3600 1.3781 0.8336
0.0022 49.0 3675 1.3784 0.8336
0.0022 50.0 3750 1.3785 0.8336

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0