hkivancoral's picture
End of training
22ad3d0
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8935108153078203

smids_1x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8198
  • Accuracy: 0.8935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6145 1.0 75 0.5428 0.7970
0.3766 2.0 150 0.5726 0.7720
0.4048 3.0 225 0.6119 0.7920
0.3699 4.0 300 0.3532 0.8619
0.3283 5.0 375 0.4734 0.8270
0.2617 6.0 450 0.5747 0.8053
0.2131 7.0 525 0.4492 0.8486
0.1731 8.0 600 0.4339 0.8686
0.1832 9.0 675 0.5654 0.8336
0.1286 10.0 750 1.0166 0.7704
0.0921 11.0 825 0.5592 0.8519
0.0818 12.0 900 0.6074 0.8486
0.1315 13.0 975 0.7091 0.8369
0.0851 14.0 1050 0.6304 0.8436
0.0354 15.0 1125 0.8000 0.8469
0.0659 16.0 1200 0.7712 0.8586
0.0297 17.0 1275 0.8136 0.8686
0.058 18.0 1350 0.7968 0.8536
0.0096 19.0 1425 0.7312 0.8719
0.0206 20.0 1500 0.7618 0.8453
0.0111 21.0 1575 1.0098 0.8336
0.0053 22.0 1650 0.8487 0.8502
0.0105 23.0 1725 0.7386 0.8702
0.0094 24.0 1800 0.8515 0.8419
0.0004 25.0 1875 0.8080 0.8636
0.0177 26.0 1950 0.6472 0.8819
0.0321 27.0 2025 0.6905 0.8785
0.0096 28.0 2100 0.6932 0.8852
0.0091 29.0 2175 0.7066 0.8869
0.0059 30.0 2250 0.7159 0.8819
0.0056 31.0 2325 0.7490 0.8869
0.0 32.0 2400 0.7569 0.8885
0.0 33.0 2475 0.7589 0.8869
0.0003 34.0 2550 0.7519 0.8935
0.01 35.0 2625 0.7808 0.8902
0.0 36.0 2700 0.7653 0.8918
0.0001 37.0 2775 0.7709 0.8902
0.0 38.0 2850 0.7835 0.8885
0.0016 39.0 2925 0.7996 0.8935
0.0 40.0 3000 0.7825 0.8918
0.0036 41.0 3075 0.7879 0.8918
0.0 42.0 3150 0.7990 0.8935
0.003 43.0 3225 0.8020 0.8935
0.0034 44.0 3300 0.8080 0.8935
0.0 45.0 3375 0.8073 0.8935
0.0 46.0 3450 0.8161 0.8935
0.0029 47.0 3525 0.8235 0.8918
0.0 48.0 3600 0.8195 0.8935
0.0023 49.0 3675 0.8192 0.8935
0.0022 50.0 3750 0.8198 0.8935

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0