metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8801996672212978
smids_5x_deit_tiny_adamax_00001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9976
- Accuracy: 0.8802
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.452 | 1.0 | 375 | 0.3866 | 0.8403 |
0.2847 | 2.0 | 750 | 0.3266 | 0.8602 |
0.2241 | 3.0 | 1125 | 0.3108 | 0.8602 |
0.1563 | 4.0 | 1500 | 0.3106 | 0.8785 |
0.1317 | 5.0 | 1875 | 0.3206 | 0.8802 |
0.0972 | 6.0 | 2250 | 0.3257 | 0.8835 |
0.0878 | 7.0 | 2625 | 0.3684 | 0.8752 |
0.0825 | 8.0 | 3000 | 0.3750 | 0.8819 |
0.0645 | 9.0 | 3375 | 0.4082 | 0.8852 |
0.0305 | 10.0 | 3750 | 0.4870 | 0.8769 |
0.0215 | 11.0 | 4125 | 0.4928 | 0.8869 |
0.037 | 12.0 | 4500 | 0.5391 | 0.8802 |
0.0369 | 13.0 | 4875 | 0.6212 | 0.8719 |
0.0169 | 14.0 | 5250 | 0.6496 | 0.8819 |
0.0205 | 15.0 | 5625 | 0.7009 | 0.8769 |
0.0006 | 16.0 | 6000 | 0.7474 | 0.8735 |
0.0156 | 17.0 | 6375 | 0.7683 | 0.8735 |
0.0004 | 18.0 | 6750 | 0.7918 | 0.8752 |
0.0002 | 19.0 | 7125 | 0.8032 | 0.8819 |
0.0009 | 20.0 | 7500 | 0.8199 | 0.8835 |
0.0001 | 21.0 | 7875 | 0.8709 | 0.8835 |
0.0001 | 22.0 | 8250 | 0.8571 | 0.8785 |
0.0001 | 23.0 | 8625 | 0.8684 | 0.8785 |
0.0001 | 24.0 | 9000 | 0.8915 | 0.8785 |
0.0 | 25.0 | 9375 | 0.9054 | 0.8785 |
0.0001 | 26.0 | 9750 | 0.9181 | 0.8802 |
0.0 | 27.0 | 10125 | 0.9162 | 0.8785 |
0.0 | 28.0 | 10500 | 0.9185 | 0.8802 |
0.0 | 29.0 | 10875 | 0.9373 | 0.8769 |
0.0 | 30.0 | 11250 | 0.9455 | 0.8819 |
0.0093 | 31.0 | 11625 | 0.9243 | 0.8785 |
0.025 | 32.0 | 12000 | 0.9658 | 0.8769 |
0.0144 | 33.0 | 12375 | 0.9598 | 0.8785 |
0.0 | 34.0 | 12750 | 0.9760 | 0.8802 |
0.0 | 35.0 | 13125 | 0.9707 | 0.8852 |
0.0 | 36.0 | 13500 | 0.9857 | 0.8785 |
0.0 | 37.0 | 13875 | 0.9774 | 0.8819 |
0.0 | 38.0 | 14250 | 0.9769 | 0.8785 |
0.0 | 39.0 | 14625 | 0.9854 | 0.8835 |
0.0009 | 40.0 | 15000 | 0.9942 | 0.8769 |
0.0 | 41.0 | 15375 | 0.9901 | 0.8802 |
0.0117 | 42.0 | 15750 | 0.9844 | 0.8785 |
0.0061 | 43.0 | 16125 | 0.9978 | 0.8785 |
0.0061 | 44.0 | 16500 | 1.0013 | 0.8802 |
0.0108 | 45.0 | 16875 | 1.0012 | 0.8769 |
0.0 | 46.0 | 17250 | 0.9950 | 0.8785 |
0.0106 | 47.0 | 17625 | 0.9952 | 0.8785 |
0.0 | 48.0 | 18000 | 0.9951 | 0.8785 |
0.0097 | 49.0 | 18375 | 0.9966 | 0.8785 |
0.0033 | 50.0 | 18750 | 0.9976 | 0.8802 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2