hkivancoral's picture
End of training
64ce536
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8801996672212978

smids_5x_deit_tiny_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9976
  • Accuracy: 0.8802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.452 1.0 375 0.3866 0.8403
0.2847 2.0 750 0.3266 0.8602
0.2241 3.0 1125 0.3108 0.8602
0.1563 4.0 1500 0.3106 0.8785
0.1317 5.0 1875 0.3206 0.8802
0.0972 6.0 2250 0.3257 0.8835
0.0878 7.0 2625 0.3684 0.8752
0.0825 8.0 3000 0.3750 0.8819
0.0645 9.0 3375 0.4082 0.8852
0.0305 10.0 3750 0.4870 0.8769
0.0215 11.0 4125 0.4928 0.8869
0.037 12.0 4500 0.5391 0.8802
0.0369 13.0 4875 0.6212 0.8719
0.0169 14.0 5250 0.6496 0.8819
0.0205 15.0 5625 0.7009 0.8769
0.0006 16.0 6000 0.7474 0.8735
0.0156 17.0 6375 0.7683 0.8735
0.0004 18.0 6750 0.7918 0.8752
0.0002 19.0 7125 0.8032 0.8819
0.0009 20.0 7500 0.8199 0.8835
0.0001 21.0 7875 0.8709 0.8835
0.0001 22.0 8250 0.8571 0.8785
0.0001 23.0 8625 0.8684 0.8785
0.0001 24.0 9000 0.8915 0.8785
0.0 25.0 9375 0.9054 0.8785
0.0001 26.0 9750 0.9181 0.8802
0.0 27.0 10125 0.9162 0.8785
0.0 28.0 10500 0.9185 0.8802
0.0 29.0 10875 0.9373 0.8769
0.0 30.0 11250 0.9455 0.8819
0.0093 31.0 11625 0.9243 0.8785
0.025 32.0 12000 0.9658 0.8769
0.0144 33.0 12375 0.9598 0.8785
0.0 34.0 12750 0.9760 0.8802
0.0 35.0 13125 0.9707 0.8852
0.0 36.0 13500 0.9857 0.8785
0.0 37.0 13875 0.9774 0.8819
0.0 38.0 14250 0.9769 0.8785
0.0 39.0 14625 0.9854 0.8835
0.0009 40.0 15000 0.9942 0.8769
0.0 41.0 15375 0.9901 0.8802
0.0117 42.0 15750 0.9844 0.8785
0.0061 43.0 16125 0.9978 0.8785
0.0061 44.0 16500 1.0013 0.8802
0.0108 45.0 16875 1.0012 0.8769
0.0 46.0 17250 0.9950 0.8785
0.0106 47.0 17625 0.9952 0.8785
0.0 48.0 18000 0.9951 0.8785
0.0097 49.0 18375 0.9966 0.8785
0.0033 50.0 18750 0.9976 0.8802

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2