metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9016666666666666
smids_5x_deit_tiny_adamax_00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8603
- Accuracy: 0.9017
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3577 | 1.0 | 375 | 0.3812 | 0.845 |
0.2949 | 2.0 | 750 | 0.2946 | 0.89 |
0.1716 | 3.0 | 1125 | 0.2716 | 0.8933 |
0.1812 | 4.0 | 1500 | 0.2588 | 0.9117 |
0.1483 | 5.0 | 1875 | 0.2753 | 0.8983 |
0.1406 | 6.0 | 2250 | 0.2966 | 0.9017 |
0.1265 | 7.0 | 2625 | 0.3030 | 0.9 |
0.1011 | 8.0 | 3000 | 0.3279 | 0.9017 |
0.0557 | 9.0 | 3375 | 0.3594 | 0.9017 |
0.0231 | 10.0 | 3750 | 0.3998 | 0.91 |
0.0281 | 11.0 | 4125 | 0.4583 | 0.89 |
0.0358 | 12.0 | 4500 | 0.4967 | 0.8967 |
0.0189 | 13.0 | 4875 | 0.5490 | 0.9017 |
0.0022 | 14.0 | 5250 | 0.5821 | 0.8967 |
0.0008 | 15.0 | 5625 | 0.6304 | 0.9017 |
0.0004 | 16.0 | 6000 | 0.6440 | 0.9017 |
0.0002 | 17.0 | 6375 | 0.6611 | 0.9017 |
0.0001 | 18.0 | 6750 | 0.6624 | 0.905 |
0.0008 | 19.0 | 7125 | 0.7059 | 0.9067 |
0.0001 | 20.0 | 7500 | 0.6928 | 0.9067 |
0.0001 | 21.0 | 7875 | 0.7172 | 0.905 |
0.0 | 22.0 | 8250 | 0.7360 | 0.905 |
0.0192 | 23.0 | 8625 | 0.7528 | 0.905 |
0.0 | 24.0 | 9000 | 0.7580 | 0.9 |
0.0 | 25.0 | 9375 | 0.7737 | 0.9017 |
0.0 | 26.0 | 9750 | 0.7755 | 0.9017 |
0.0 | 27.0 | 10125 | 0.7892 | 0.9 |
0.0 | 28.0 | 10500 | 0.7918 | 0.905 |
0.0 | 29.0 | 10875 | 0.8126 | 0.9017 |
0.0178 | 30.0 | 11250 | 0.8092 | 0.8967 |
0.0 | 31.0 | 11625 | 0.8243 | 0.9033 |
0.0 | 32.0 | 12000 | 0.8257 | 0.9017 |
0.0 | 33.0 | 12375 | 0.8314 | 0.9017 |
0.0 | 34.0 | 12750 | 0.8261 | 0.9033 |
0.0 | 35.0 | 13125 | 0.8406 | 0.9033 |
0.0 | 36.0 | 13500 | 0.8423 | 0.9033 |
0.0 | 37.0 | 13875 | 0.8427 | 0.905 |
0.0 | 38.0 | 14250 | 0.8439 | 0.9017 |
0.0 | 39.0 | 14625 | 0.8460 | 0.9033 |
0.0006 | 40.0 | 15000 | 0.8531 | 0.905 |
0.0 | 41.0 | 15375 | 0.8498 | 0.9033 |
0.0 | 42.0 | 15750 | 0.8562 | 0.9017 |
0.0 | 43.0 | 16125 | 0.8549 | 0.9033 |
0.0 | 44.0 | 16500 | 0.8565 | 0.905 |
0.0 | 45.0 | 16875 | 0.8586 | 0.905 |
0.0 | 46.0 | 17250 | 0.8582 | 0.9017 |
0.0 | 47.0 | 17625 | 0.8601 | 0.9017 |
0.0 | 48.0 | 18000 | 0.8602 | 0.9017 |
0.0 | 49.0 | 18375 | 0.8603 | 0.9017 |
0.0 | 50.0 | 18750 | 0.8603 | 0.9017 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2