hkivancoral's picture
End of training
3cf0bf0
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9016666666666666

smids_5x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8603
  • Accuracy: 0.9017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3577 1.0 375 0.3812 0.845
0.2949 2.0 750 0.2946 0.89
0.1716 3.0 1125 0.2716 0.8933
0.1812 4.0 1500 0.2588 0.9117
0.1483 5.0 1875 0.2753 0.8983
0.1406 6.0 2250 0.2966 0.9017
0.1265 7.0 2625 0.3030 0.9
0.1011 8.0 3000 0.3279 0.9017
0.0557 9.0 3375 0.3594 0.9017
0.0231 10.0 3750 0.3998 0.91
0.0281 11.0 4125 0.4583 0.89
0.0358 12.0 4500 0.4967 0.8967
0.0189 13.0 4875 0.5490 0.9017
0.0022 14.0 5250 0.5821 0.8967
0.0008 15.0 5625 0.6304 0.9017
0.0004 16.0 6000 0.6440 0.9017
0.0002 17.0 6375 0.6611 0.9017
0.0001 18.0 6750 0.6624 0.905
0.0008 19.0 7125 0.7059 0.9067
0.0001 20.0 7500 0.6928 0.9067
0.0001 21.0 7875 0.7172 0.905
0.0 22.0 8250 0.7360 0.905
0.0192 23.0 8625 0.7528 0.905
0.0 24.0 9000 0.7580 0.9
0.0 25.0 9375 0.7737 0.9017
0.0 26.0 9750 0.7755 0.9017
0.0 27.0 10125 0.7892 0.9
0.0 28.0 10500 0.7918 0.905
0.0 29.0 10875 0.8126 0.9017
0.0178 30.0 11250 0.8092 0.8967
0.0 31.0 11625 0.8243 0.9033
0.0 32.0 12000 0.8257 0.9017
0.0 33.0 12375 0.8314 0.9017
0.0 34.0 12750 0.8261 0.9033
0.0 35.0 13125 0.8406 0.9033
0.0 36.0 13500 0.8423 0.9033
0.0 37.0 13875 0.8427 0.905
0.0 38.0 14250 0.8439 0.9017
0.0 39.0 14625 0.8460 0.9033
0.0006 40.0 15000 0.8531 0.905
0.0 41.0 15375 0.8498 0.9033
0.0 42.0 15750 0.8562 0.9017
0.0 43.0 16125 0.8549 0.9033
0.0 44.0 16500 0.8565 0.905
0.0 45.0 16875 0.8586 0.905
0.0 46.0 17250 0.8582 0.9017
0.0 47.0 17625 0.8601 0.9017
0.0 48.0 18000 0.8602 0.9017
0.0 49.0 18375 0.8603 0.9017
0.0 50.0 18750 0.8603 0.9017

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2