hkivancoral's picture
End of training
21e19dd
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8783333333333333

smids_5x_deit_tiny_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4112
  • Accuracy: 0.8783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2498 1.0 375 0.3750 0.8583
0.2126 2.0 750 0.3946 0.8617
0.0815 3.0 1125 0.3928 0.8817
0.1183 4.0 1500 0.4272 0.8733
0.1029 5.0 1875 0.5782 0.8833
0.0245 6.0 2250 0.6426 0.8867
0.0551 7.0 2625 0.8096 0.8733
0.0319 8.0 3000 0.8011 0.8733
0.0533 9.0 3375 0.8429 0.875
0.0056 10.0 3750 0.9672 0.8617
0.0136 11.0 4125 1.0120 0.8667
0.0031 12.0 4500 0.9881 0.87
0.0176 13.0 4875 1.1184 0.8767
0.0127 14.0 5250 1.1325 0.8583
0.0003 15.0 5625 1.2848 0.8683
0.0058 16.0 6000 1.1232 0.87
0.0002 17.0 6375 1.0571 0.8817
0.0421 18.0 6750 1.2079 0.8717
0.0004 19.0 7125 1.2753 0.87
0.0001 20.0 7500 1.3783 0.86
0.0 21.0 7875 1.3177 0.865
0.002 22.0 8250 1.3637 0.8633
0.0002 23.0 8625 1.4459 0.87
0.0005 24.0 9000 1.2813 0.875
0.0 25.0 9375 1.2487 0.88
0.0 26.0 9750 1.2405 0.875
0.0008 27.0 10125 1.3345 0.885
0.0001 28.0 10500 1.5106 0.865
0.0 29.0 10875 1.2765 0.8733
0.0 30.0 11250 1.2626 0.875
0.0332 31.0 11625 1.3653 0.8667
0.0 32.0 12000 1.3469 0.8683
0.0 33.0 12375 1.2524 0.8817
0.0 34.0 12750 1.2947 0.8767
0.0 35.0 13125 1.2962 0.8733
0.0 36.0 13500 1.3559 0.8783
0.0 37.0 13875 1.3878 0.8817
0.0033 38.0 14250 1.3553 0.8767
0.0 39.0 14625 1.4121 0.875
0.0 40.0 15000 1.4174 0.875
0.0 41.0 15375 1.4132 0.875
0.0 42.0 15750 1.4182 0.8767
0.0 43.0 16125 1.4186 0.8767
0.0 44.0 16500 1.4200 0.8767
0.0 45.0 16875 1.4125 0.8783
0.0 46.0 17250 1.4134 0.88
0.0 47.0 17625 1.4114 0.8783
0.0 48.0 18000 1.4108 0.8783
0.0 49.0 18375 1.4113 0.8783
0.0 50.0 18750 1.4112 0.8783

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2