hkivancoral's picture
End of training
8aa36d0
|
raw
history blame
4.86 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8818635607321131

smids_5x_deit_tiny_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3259
  • Accuracy: 0.8819

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8524 1.0 375 0.7691 0.6689
0.5007 2.0 750 0.5539 0.7804
0.4114 3.0 1125 0.4742 0.8070
0.3629 4.0 1500 0.4296 0.8286
0.3623 5.0 1875 0.3981 0.8469
0.3098 6.0 2250 0.3783 0.8502
0.3017 7.0 2625 0.3643 0.8453
0.3224 8.0 3000 0.3602 0.8519
0.2666 9.0 3375 0.3471 0.8586
0.2737 10.0 3750 0.3436 0.8552
0.2547 11.0 4125 0.3356 0.8669
0.2986 12.0 4500 0.3379 0.8602
0.2268 13.0 4875 0.3304 0.8669
0.2538 14.0 5250 0.3304 0.8702
0.2279 15.0 5625 0.3282 0.8602
0.1964 16.0 6000 0.3276 0.8719
0.2475 17.0 6375 0.3297 0.8652
0.2224 18.0 6750 0.3277 0.8669
0.1863 19.0 7125 0.3205 0.8686
0.2493 20.0 7500 0.3208 0.8752
0.1873 21.0 7875 0.3214 0.8769
0.1921 22.0 8250 0.3223 0.8735
0.2083 23.0 8625 0.3204 0.8735
0.1865 24.0 9000 0.3201 0.8702
0.1643 25.0 9375 0.3196 0.8802
0.2115 26.0 9750 0.3209 0.8785
0.2108 27.0 10125 0.3192 0.8802
0.1576 28.0 10500 0.3201 0.8802
0.1807 29.0 10875 0.3220 0.8785
0.1891 30.0 11250 0.3216 0.8802
0.1864 31.0 11625 0.3224 0.8835
0.1759 32.0 12000 0.3215 0.8852
0.1618 33.0 12375 0.3224 0.8835
0.1343 34.0 12750 0.3219 0.8835
0.1642 35.0 13125 0.3213 0.8852
0.1538 36.0 13500 0.3239 0.8785
0.1527 37.0 13875 0.3229 0.8852
0.1581 38.0 14250 0.3248 0.8802
0.135 39.0 14625 0.3238 0.8852
0.1591 40.0 15000 0.3237 0.8835
0.1366 41.0 15375 0.3243 0.8819
0.1361 42.0 15750 0.3249 0.8785
0.1751 43.0 16125 0.3245 0.8835
0.135 44.0 16500 0.3255 0.8819
0.1208 45.0 16875 0.3256 0.8819
0.1748 46.0 17250 0.3261 0.8819
0.1449 47.0 17625 0.3264 0.8785
0.1594 48.0 18000 0.3263 0.8785
0.1892 49.0 18375 0.3260 0.8819
0.1218 50.0 18750 0.3259 0.8819

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2