|
--- |
|
license: apache-2.0 |
|
base_model: michiyasunaga/BioLinkBERT-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sem_eval_2024_task_2 |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: run1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: sem_eval_2024_task_2 |
|
type: sem_eval_2024_task_2 |
|
config: sem_eval_2024_task_2_source |
|
split: validation |
|
args: sem_eval_2024_task_2_source |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.64 |
|
- name: Precision |
|
type: precision |
|
value: 0.6582994120307553 |
|
- name: Recall |
|
type: recall |
|
value: 0.64 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6292863762743282 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# run1 |
|
|
|
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the sem_eval_2024_task_2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2153 |
|
- Accuracy: 0.64 |
|
- Precision: 0.6583 |
|
- Recall: 0.64 |
|
- F1: 0.6293 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 0.99 | 53 | 0.6971 | 0.515 | 0.5272 | 0.515 | 0.4537 | |
|
| 0.7029 | 2.0 | 107 | 0.6899 | 0.535 | 0.5413 | 0.535 | 0.5166 | |
|
| 0.7029 | 2.99 | 160 | 0.6855 | 0.535 | 0.5399 | 0.5350 | 0.5203 | |
|
| 0.6955 | 4.0 | 214 | 0.6698 | 0.565 | 0.5686 | 0.5650 | 0.5592 | |
|
| 0.6955 | 4.99 | 267 | 0.6722 | 0.57 | 0.5703 | 0.5700 | 0.5696 | |
|
| 0.6581 | 6.0 | 321 | 0.6367 | 0.61 | 0.6104 | 0.61 | 0.6096 | |
|
| 0.6581 | 6.99 | 374 | 0.6973 | 0.58 | 0.5905 | 0.58 | 0.5675 | |
|
| 0.5796 | 8.0 | 428 | 0.6925 | 0.625 | 0.6348 | 0.625 | 0.6180 | |
|
| 0.5796 | 8.99 | 481 | 0.7539 | 0.61 | 0.6364 | 0.61 | 0.5902 | |
|
| 0.4636 | 10.0 | 535 | 0.9313 | 0.575 | 0.6043 | 0.575 | 0.5429 | |
|
| 0.4636 | 10.99 | 588 | 0.9028 | 0.615 | 0.6227 | 0.615 | 0.6089 | |
|
| 0.3577 | 12.0 | 642 | 0.8694 | 0.615 | 0.6227 | 0.615 | 0.6089 | |
|
| 0.3577 | 12.99 | 695 | 0.9201 | 0.635 | 0.6494 | 0.635 | 0.6260 | |
|
| 0.3041 | 14.0 | 749 | 0.9186 | 0.645 | 0.6583 | 0.645 | 0.6374 | |
|
| 0.3041 | 14.99 | 802 | 1.1683 | 0.63 | 0.6578 | 0.63 | 0.6129 | |
|
| 0.2344 | 16.0 | 856 | 1.1405 | 0.625 | 0.6383 | 0.625 | 0.6158 | |
|
| 0.2344 | 16.99 | 909 | 1.2451 | 0.625 | 0.6474 | 0.625 | 0.6102 | |
|
| 0.208 | 18.0 | 963 | 1.1640 | 0.65 | 0.6671 | 0.65 | 0.6408 | |
|
| 0.208 | 18.99 | 1016 | 1.2081 | 0.64 | 0.6583 | 0.64 | 0.6293 | |
|
| 0.1757 | 19.81 | 1060 | 1.2153 | 0.64 | 0.6583 | 0.64 | 0.6293 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|