|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- deepseek-ai/DeepSeek-V3 |
|
tags: |
|
- deepseek_v3 |
|
- bf16 |
|
- Safetensors |
|
- custom_code |
|
- Pruned |
|
--- |
|
|
|
# huihui-ai/DeepSeek-V3-Pruned-Coder-411B |
|
|
|
|
|
|
|
|
|
This is a pruned version of the [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3), |
|
reduced from 256 experts to 160 experts. The pruned model is mainly used for [code](https://huggingface.co/huihui-ai/DeepSeek-V3-Pruned-Coder-411B/blob/main/coding_problems.py) generation. |
|
|
|
|
|
This is a test validation to see if we can prune the model according to professional requirements and still maintain acceptable performance. |
|
The model size has been reduced by about 1/3, and no distortion has occurred. |
|
|
|
This allows the model to be pruned according to one's needs. |
|
|
|
This pruned model has a total parameter is equivalent to 441B. |
|
|
|
We will also try to prune [deepseek-ai/DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1). |
|
|
|
## Use with ollama |
|
|
|
You can use [huihui_ai/deepseek-v3-pruned](https://ollama.com/huihui_ai/deepseek-v3-pruned) directly |
|
``` |
|
ollama run huihui_ai/deepseek-v3-pruned |
|
``` |
|
|
|
|
|
## Use with transformers |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
import torch |
|
|
|
# Load the model and tokenizer |
|
NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-Pruned-Coder-411B" |
|
quant_config_4 = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
NEW_MODEL_ID, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
quantization_config=quant_config_4, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
# Initialize conversation context |
|
initial_messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."} |
|
] |
|
messages = initial_messages.copy() # Copy the initial conversation context |
|
|
|
# Enter conversation loop |
|
while True: |
|
# Get user input |
|
user_input = input("User: ").strip() # Strip leading and trailing spaces |
|
|
|
# If the user types '/exit', end the conversation |
|
if user_input.lower() == "/exit": |
|
print("Exiting chat.") |
|
break |
|
|
|
# If the user types '/clean', reset the conversation context |
|
if user_input.lower() == "/clear": |
|
messages = initial_messages.copy() # Reset conversation context |
|
print("Chat history cleared. Starting a new conversation.") |
|
continue |
|
|
|
# If input is empty, prompt the user and continue |
|
if not user_input: |
|
print("Input cannot be empty. Please enter something.") |
|
continue |
|
|
|
# Add user input to the conversation |
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True) |
|
response_token_ids = model.generate(tokenized_message['input_ids'].to("cuda:0"), use_cache=False, pad_token_id=tokenizer.pad_token_id, max_new_tokens=8192) |
|
generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):] |
|
response = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] |
|
|
|
# Add the model's response to the conversation |
|
messages.append({"role": "assistant", "content": response}) |
|
|
|
# Print the model's response |
|
print(f"Response: {response}") |
|
``` |
|
|
|
### Donation |
|
|
|
If you like it, please click 'like' and follow us for more updates. |
|
You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. |
|
|
|
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. |
|
- bitcoin: |
|
``` |
|
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge |
|
``` |
|
|