metadata
library_name: pytorch
tags:
- gan
- mnist
- image-generation
- computer-vision
- pytorch
license: mit
datasets:
- mnist
model-index:
- name: DCGAN-MNIST
results: []
GAN-MNIST
A simple yet effective DCGAN trained on the MNIST dataset using PyTorch, designed for data augmentation experiments.
🧠 Model Details
- Architecture: Deep Convolutional GAN (DCGAN)
- Generator/Discriminator: 3-layer CNN
- Latent Dimension: 100
- Epochs Trained: 20
- Final FID Score: 24.16
- Image Size: 28×28 grayscale
📦 Usage
from torch import load
from models.gan.model import Generator
# Load model
model = Generator(latent_dim=100, img_channels=1)
model.load_state_dict(load("generator.pt"))
model.eval()