|
--- |
|
library_name: pytorch |
|
tags: |
|
- gan |
|
- mnist |
|
- image-generation |
|
- computer-vision |
|
- pytorch |
|
license: mit |
|
datasets: |
|
- mnist |
|
model-index: |
|
- name: DCGAN-MNIST |
|
results: [] |
|
--- |
|
|
|
# GAN-MNIST |
|
|
|
A simple yet effective **DCGAN** trained on the **MNIST** dataset using PyTorch, designed for **data augmentation** experiments. |
|
|
|
## 🧠 Model Details |
|
|
|
- **Architecture:** Deep Convolutional GAN (DCGAN) |
|
- **Generator/Discriminator:** 3-layer CNN |
|
- **Latent Dimension:** 100 |
|
- **Epochs Trained:** 20 |
|
- **Final FID Score:** 24.16 |
|
- **Image Size:** 28×28 grayscale |
|
|
|
## 📦 Usage |
|
|
|
```python |
|
from torch import load |
|
from models.gan.model import Generator |
|
|
|
# Load model |
|
model = Generator(latent_dim=100, img_channels=1) |
|
model.load_state_dict(load("generator.pt")) |
|
model.eval() |
|
|