ibrahimbukhari1998's picture
End of training
3a34274 verified
metadata
library_name: transformers
license: apache-2.0
base_model: cis-lmu/glot500-base
tags:
  - generated_from_trainer
datasets:
  - universal_dependencies
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: glot500_model_en_ewt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: universal_dependencies
          type: universal_dependencies
          config: en_ewt
          split: test
          args: en_ewt
        metrics:
          - name: Precision
            type: precision
            value: 0.9400958805311612
          - name: Recall
            type: recall
            value: 0.9420542470878327
          - name: F1
            type: f1
            value: 0.9410740449748372
          - name: Accuracy
            type: accuracy
            value: 0.9483660387746274

glot500_model_en_ewt

This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2101
  • Precision: 0.9401
  • Recall: 0.9421
  • F1: 0.9411
  • Accuracy: 0.9484

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0519 1.0 625 0.2891 0.9291 0.9298 0.9295 0.9396
0.2366 2.0 1250 0.2101 0.9401 0.9421 0.9411 0.9484

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3