ij5's picture
Update README.md
a6ece63 verified
---
library_name: transformers
license: cc-by-4.0
base_model: paust/pko-t5-base
tags:
- generated_from_trainer
model-index:
- name: correction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Basic Inference
```python
from transformers import T5TokenizerFast, T5ForConditionalGeneration
tokenizer = T5TokenizerFast.from_pretrained('ij5/whitespace-correction')
model = T5ForConditionalGeneration.from_pretrained('ij5/whitespace-correction')
def fix_whitespace(text):
inputs = f"띄어쓰기 ꡐ정: {text}"
tokenized = tokenizer(inputs, max_length=128, truncation=True, return_tensors='pt').to('cuda')
output_ids = model.generate(
input_ids=tokenized['input_ids'],
attention_mask=tokenized['attention_mask'],
max_length=128,
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(fix_whitespace("흔듀 λ¦¬λŠ” κ°€μ§€ μ‚¬μ΄λ‘œ 뢈μ‘₯ λ°”λžŒμ˜ ν˜•μƒ 이 λ“œ λŸ¬λ‚˜κΈ°λΌλ„ ν•  κ²ƒμ²˜λŸΌ."))
# result: ν”λ“€λ¦¬λŠ” κ°€μ§€ μ‚¬μ΄λ‘œ 뢈μ‘₯ λ°”λžŒμ˜ ν˜•μƒμ΄ λ“œλŸ¬λ‚˜κΈ°λΌλ„ ν•  κ²ƒμ²˜λŸΌ.
```
# correction
This model is a fine-tuned version of [paust/pko-t5-base](https://huggingface.co/paust/pko-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0243 | 1.0 | 1688 | 0.0183 |
| 0.0172 | 2.0 | 3376 | 0.0165 |
| 0.0126 | 3.0 | 5064 | 0.0160 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0