|
--- |
|
library_name: transformers |
|
license: cc-by-4.0 |
|
base_model: paust/pko-t5-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: correction |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Basic Inference |
|
```python |
|
from transformers import T5TokenizerFast, T5ForConditionalGeneration |
|
|
|
tokenizer = T5TokenizerFast.from_pretrained('ij5/whitespace-correction') |
|
model = T5ForConditionalGeneration.from_pretrained('ij5/whitespace-correction') |
|
|
|
def fix_whitespace(text): |
|
inputs = f"λμ΄μ°κΈ° κ΅μ : {text}" |
|
tokenized = tokenizer(inputs, max_length=128, truncation=True, return_tensors='pt').to('cuda') |
|
output_ids = model.generate( |
|
input_ids=tokenized['input_ids'], |
|
attention_mask=tokenized['attention_mask'], |
|
max_length=128, |
|
) |
|
return tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
print(fix_whitespace("νλ€ λ¦¬λ κ°μ§ μ¬μ΄λ‘ λΆμ₯ λ°λμ νμ μ΄ λ λ¬λκΈ°λΌλ ν κ²μ²λΌ.")) |
|
# result: νλ€λ¦¬λ κ°μ§ μ¬μ΄λ‘ λΆμ₯ λ°λμ νμμ΄ λλ¬λκΈ°λΌλ ν κ²μ²λΌ. |
|
``` |
|
|
|
# correction |
|
|
|
This model is a fine-tuned version of [paust/pko-t5-base](https://huggingface.co/paust/pko-t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0160 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.0243 | 1.0 | 1688 | 0.0183 | |
|
| 0.0172 | 2.0 | 3376 | 0.0165 | |
|
| 0.0126 | 3.0 | 5064 | 0.0160 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|