|
--- |
|
license: mit |
|
base_model: xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fine-tuning-xlmr-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine-tuning-xlmr-large |
|
|
|
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7558 |
|
- Accuracy: 0.7692 |
|
- Precision: 0.7692 |
|
- Recall: 0.7692 |
|
- F1 Score: 0.7693 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 101 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|:--------:| |
|
| 1.3385 | 1.0 | 10330 | 1.8072 | 0.5708 | 0.5708 | 0.5708 | 0.5622 | |
|
| 1.7231 | 2.0 | 20660 | 1.8354 | 0.6445 | 0.6445 | 0.6445 | 0.6454 | |
|
| 1.4049 | 3.0 | 30990 | 1.8380 | 0.6969 | 0.6969 | 0.6969 | 0.6990 | |
|
| 1.4543 | 4.0 | 41320 | 1.5726 | 0.7415 | 0.7415 | 0.7415 | 0.7417 | |
|
| 1.4139 | 5.0 | 51650 | 1.6838 | 0.7424 | 0.7424 | 0.7424 | 0.7439 | |
|
| 1.2368 | 6.0 | 61980 | 1.6794 | 0.7424 | 0.7424 | 0.7424 | 0.7448 | |
|
| 1.0418 | 7.0 | 72310 | 1.6720 | 0.7542 | 0.7542 | 0.7542 | 0.7556 | |
|
| 1.246 | 8.0 | 82640 | 1.6746 | 0.7638 | 0.7638 | 0.7638 | 0.7642 | |
|
| 0.9896 | 9.0 | 92970 | 1.7497 | 0.7674 | 0.7674 | 0.7674 | 0.7666 | |
|
| 0.9855 | 10.0 | 103300 | 1.7558 | 0.7692 | 0.7692 | 0.7692 | 0.7693 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.0 |
|
|