librarian-bot's picture
Librarian Bot: Add base_model information to model
027683d
|
raw
history blame
2.83 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - marker-associations-binary-base
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
model-index:
  - name: marker-associations-binary-base
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: marker-associations-binary-base
          type: marker-associations-binary-base
        metrics:
          - type: precision
            value: 0.7981651376146789
            name: Precision
          - type: recall
            value: 0.9560439560439561
            name: Recall
          - type: f1
            value: 0.87
            name: F1
          - type: accuracy
            value: 0.8884120171673819
            name: Accuracy

marker-associations-binary-base

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the marker-associations-binary-base dataset. It achieves the following results on the evaluation set:

Gene Results

  • Precision = 0.808
  • Recall = 0.940
  • F1 = 0.869
  • Accuracy = 0.862
  • AUC = 0.944

Chemical Results

  • Precision = 0.774
  • Recall = 1.0
  • F1 = 0.873
  • Accuracy = 0.926
  • AUC = 0.964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Auc
No log 1.0 88 0.3266 0.8191 0.8462 0.8324 0.8670 0.9313
No log 2.0 176 0.3335 0.7870 0.9341 0.8543 0.8755 0.9465
No log 3.0 264 0.4243 0.7982 0.9560 0.87 0.8884 0.9516
No log 4.0 352 0.5388 0.825 0.7253 0.7719 0.8326 0.9384
No log 5.0 440 0.7101 0.8537 0.7692 0.8092 0.8584 0.9416
0.1824 6.0 528 0.6175 0.8242 0.8242 0.8242 0.8627 0.9478

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.0+cu111
  • Tokenizers 0.10.3