jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import math
from typing import Iterable, Tuple, Union, TYPE_CHECKING
import re
from dataclasses import dataclass
from collections.abc import Iterable as IterColl
import torch
from einops import rearrange, repeat
from torch import Tensor, nn
from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from comfy.ldm.modules.diffusionmodules import openaimodel
from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer
from comfy.controlnet import broadcast_image_to
from comfy.utils import repeat_to_batch_size
import comfy.ops
import comfy.model_management
from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows
from .adapter_animatelcm_i2v import AdapterEmbed
if TYPE_CHECKING: # avoids circular import
from .adapter_cameractrl import CameraPoseEncoder
from .adapter_fancyvideo import FancyVideoCondEmbedding, FancyVideoKeys, initialize_weights_to_zero
from .utils_motion import (CrossAttentionMM, MotionCompatibilityError, DummyNNModule, extend_to_batch_size, extend_list_to_batch_size,
prepare_mask_batch, get_combined_multival)
from .utils_model import BetaSchedules, ModelTypeSD
from .logger import logger
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class AnimateDiffFormat:
ANIMATEDIFF = "AnimateDiff"
HOTSHOTXL = "HotshotXL"
ANIMATELCM = "AnimateLCM"
PIA = "PIA"
FANCYVIDEO = "FancyVideo"
_LIST = [ANIMATEDIFF, HOTSHOTXL, ANIMATELCM, PIA, FANCYVIDEO]
class AnimateDiffVersion:
V1 = "v1"
V2 = "v2"
V3 = "v3"
_LIST = [V1, V2, V3]
class AnimateDiffInfo:
def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str):
self.sd_type = sd_type
self.mm_format = mm_format
self.mm_version = mm_version
self.mm_name = mm_name
def get_string(self):
return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}"
#######################
# Facilitate Per-Block Effect and Scale Control
class PerAttn:
def __init__(self, attn_idx: Union[int, None], scale: Union[float, Tensor, None]):
self.attn_idx = attn_idx
self.scale = scale
def matches(self, id: int):
if self.attn_idx is None:
return True
return self.attn_idx == id
class PerBlockId:
def __init__(self, block_type: str, block_idx: Union[int, None]=None, module_idx: Union[int, None]=None):
self.block_type = block_type
self.block_idx = block_idx
self.module_idx = module_idx
def matches(self, other: 'PerBlockId') -> bool:
# block_type
if other.block_type != self.block_type:
return False
# block_idx
if other.block_idx is None:
return True
elif other.block_idx != self.block_idx:
return False
# module_idx
if other.module_idx is None:
return True
return other.module_idx == self.module_idx
def __str__(self):
return f"PerBlockId({self.block_type},{self.block_idx},{self.module_idx})"
class PerBlock:
def __init__(self, id: PerBlockId, effect: Union[float, Tensor, None]=None,
scales: Union[list[Union[float, Tensor, None]], None]=None):
self.id = id
self.effect = effect
self.scales = scales
def matches(self, id: PerBlockId):
return self.id.matches(id)
@dataclass
class AllPerBlocks:
per_block_list: list[PerBlock]
sd_type: Union[str, None] = None
#----------------------
#######################
def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool:
# use pos_encoder naming to determine if hotshotxl model
for key in mm_state_dict.keys():
if key.endswith("pos_encoder.positional_encoding"):
return True
return False
def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool:
# use lack of ANY pos_encoder keys to determine if animatelcm model
for key in mm_state_dict.keys():
if "pos_encoder" in key:
return False
return True
def is_hellomeme(mm_state_dict: dict[str, Tensor]) -> bool:
for key in mm_state_dict.keys():
if "pos_embed" in key:
return True
return False
def has_conv_in(mm_state_dict: dict[str, Tensor]) -> bool:
# check if conv_in.weight and .bias are present
if "conv_in.weight" in mm_state_dict and "conv_in.bias" in mm_state_dict:
return True
return False
def is_fancyvideo(mm_state_dict: dict[str, Tensor]) -> bool:
if 'FancyVideo' in mm_state_dict:
return True
return False
def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
return get_block_max(mm_state_dict, "down_blocks")
def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int:
return get_block_max(mm_state_dict, "up_blocks")
def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int:
# keep track of biggest down_block count in module
biggest_block = -1
for key in mm_state_dict.keys():
if block_name in key:
try:
block_int = key.split(".")[1]
block_num = int(block_int)
if block_num > biggest_block:
biggest_block = block_num
except ValueError:
pass
return biggest_block
def has_mid_block(mm_state_dict: dict[str, Tensor]):
# check if keys contain mid_block
for key in mm_state_dict.keys():
if key.startswith("mid_block."):
return True
return False
_regex_attention_blocks_num = re.compile(r'\.attention_blocks\.(\d+)\.')
def get_attention_block_max_len(mm_state_dict: dict[str, Tensor]):
biggest_attention = -1
for key in mm_state_dict.keys():
found = _regex_attention_blocks_num.search(key)
if found:
attention_num = int(found.group(1))
if attention_num > biggest_attention:
biggest_attention = attention_num
return biggest_attention + 1
def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]:
# use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
for key in mm_state_dict.keys():
if key.endswith("pos_encoder.pe"):
return mm_state_dict[key].size(1) # get middle dim
# AnimateLCM models should have no pos_encoder entries, and assumed to be 64
if mm_format == AnimateDiffFormat.ANIMATELCM:
return 64
raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!")
_regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.')
def find_hotshot_module_num(key: str) -> Union[int, None]:
found = _regex_hotshotxl_module_num.search(key)
if found:
return int(found.group(1))
return None
_regex_hellomeme_module_num = re.compile(r'motion_modules\.(\d+)\.')
def find_hellomeme_module_num(key: str) -> Union[int, None]:
found = _regex_hellomeme_module_num.search(key)
if found:
return int(found.group(1))
return None
def has_img_encoder(mm_state_dict: dict[str, Tensor]):
for key in mm_state_dict.keys():
if key.startswith("img_encoder."):
return True
return False
def has_fps_embedding(mm_state_dict: dict[str, Tensor]):
for key in mm_state_dict.keys():
if key.startswith("fps_embedding."):
return True
return False
def has_motion_embedding(mm_state_dict: dict[str, Tensor]):
for key in mm_state_dict.keys():
if key.startswith("motion_embedding."):
return True
return False
def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]:
# from pathlib import Path
# log_name = mm_name.split('\\')[-1]
# with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
# for key, value in mm_state_dict.items():
# if key == 'module':
# for inkey, invalue in value.items():
# if hasattr(invalue, 'shape'):
# afile.write(f"{inkey}:\t{invalue.shape}\n")
# else:
# afile.write(f"{inkey}:\t{invalue}\n")
# elif hasattr(value, 'shape'):
# afile.write(f"{key}:\t{value.shape}\n")
# else:
# afile.write(f"{key}:\t{type(value)}\n")
# determine what SD model the motion module is intended for
sd_type: str = None
down_block_max = get_down_block_max(mm_state_dict)
if down_block_max == 3:
sd_type = ModelTypeSD.SD1_5
elif down_block_max == 2:
sd_type = ModelTypeSD.SDXL
else:
raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.")
# determine the model's format
mm_format = AnimateDiffFormat.ANIMATEDIFF
if is_hellomeme(mm_state_dict):
convert_hellomeme_state_dict(mm_state_dict)
if is_hotshotxl(mm_state_dict):
mm_format = AnimateDiffFormat.HOTSHOTXL
if is_animatelcm(mm_state_dict):
mm_format = AnimateDiffFormat.ANIMATELCM
if has_conv_in(mm_state_dict):
mm_format = AnimateDiffFormat.PIA
if is_fancyvideo(mm_state_dict):
mm_format = AnimateDiffFormat.FANCYVIDEO
mm_state_dict.pop("FancyVideo")
# for AnimateLCM-I2V purposes, check for img_encoder keys
contains_img_encoder = has_img_encoder(mm_state_dict)
# remove all non-temporal keys (in case model has extra stuff in it)
for key in list(mm_state_dict.keys()):
if "temporal" not in key:
if mm_format == AnimateDiffFormat.ANIMATELCM and contains_img_encoder and key.startswith("img_encoder."):
continue
if mm_format == AnimateDiffFormat.PIA and key.startswith("conv_in."):
continue
if mm_format == AnimateDiffFormat.FANCYVIDEO and key in FancyVideoKeys:
continue
del mm_state_dict[key]
# determine the model's version
mm_version = AnimateDiffVersion.V1
if has_mid_block(mm_state_dict):
mm_version = AnimateDiffVersion.V2
elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32:
mm_version = AnimateDiffVersion.V3
info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name)
# convert to AnimateDiff format, if needed
if mm_format == AnimateDiffFormat.HOTSHOTXL:
convert_hotshot_state_dict(mm_state_dict)
# return adjusted mm_state_dict and info
return mm_state_dict, info
def convert_hotshot_state_dict(mm_state_dict: dict[str, Tensor]):
# HotshotXL is AD-based architecture applied to SDXL instead of SD1.5
# By renaming the keys, no code needs to be adapted at all
################################
# reformat temporal_attentions:
# HSXL: temporal_attentions.#.
# AD: motion_modules.#.temporal_transformer.
# HSXL: pos_encoder.positional_encoding
# AD: pos_encoder.pe
for key in list(mm_state_dict.keys()):
module_num = find_hotshot_module_num(key)
if module_num is not None:
new_key = key.replace(f"temporal_attentions.{module_num}",
f"motion_modules.{module_num}.temporal_transformer", 1)
new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe")
mm_state_dict[new_key] = mm_state_dict[key]
del mm_state_dict[key]
def convert_hellomeme_state_dict(mm_state_dict: dict[str, Tensor]):
# HelloMeme is AD-based architecture
for key in list(mm_state_dict.keys()):
module_num = find_hellomeme_module_num(key)
if module_num is not None:
# first, add temporal_transformer everywhere as suffix after motion_modules.#.
new_key = key.replace(f"motion_modules.{module_num}",
f"motion_modules.{module_num}.temporal_transformer")
if "pos_embed" in new_key:
new_key1 = new_key.replace("pos_embed.pe", "attention_blocks.0.pos_encoder.pe")
new_key2 = new_key.replace("pos_embed.pe", "attention_blocks.1.pos_encoder.pe")
mm_state_dict[new_key1] = mm_state_dict[key].clone()
mm_state_dict[new_key2] = mm_state_dict[key].clone()
else:
if "attn1" in new_key:
new_key = new_key.replace("attn1.", "attention_blocks.0.")
elif "attn2" in new_key:
new_key = new_key.replace("attn2.", "attention_blocks.1.")
elif "norm1" in new_key:
new_key = new_key.replace("norm1.", "norms.0.")
elif "norm2" in new_key:
new_key = new_key.replace("norm2.", "norms.1.")
elif "norm3" in new_key:
new_key = new_key.replace("norm3.", "ff_norm.")
mm_state_dict[new_key] = mm_state_dict[key]
del mm_state_dict[key]
class InitKwargs:
OPS = "ops"
GET_UNET_FUNC = "get_unet_func"
ATTN_BLOCK_TYPE = "attn_block_type"
class BlockType:
UP = "up"
DOWN = "down"
MID = "mid"
def get_unet_default(wrapper: 'AnimateDiffModel', model: ModelPatcher):
return model.model.diffusion_model
class AnimateDiffModel(nn.Module):
def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo, init_kwargs: dict[str]={}):
super().__init__()
self.mm_info = mm_info
self.down_blocks: list[MotionModule] = None
self.up_blocks: list[MotionModule] = None
self.mid_block: Union[MotionModule, None] = None
self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format)
self.has_position_encoding = self.encoding_max_len is not None
self.attn_len = get_attention_block_max_len(mm_state_dict)
self.attn_type = init_kwargs.get(InitKwargs.ATTN_BLOCK_TYPE, "Temporal_Self")
self.attn_block_types = tuple([self.attn_type] * self.attn_len)
# determine ops to use (to support fp8 properly)
self.ops = init_kwargs.get(InitKwargs.OPS, None)
if self.ops is None:
if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None:
self.ops = comfy.ops.disable_weight_init
else:
self.ops = comfy.ops.manual_cast
# SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks
if mm_info.sd_type == ModelTypeSD.SDXL:
layer_channels = (320, 640, 1280)
else:
layer_channels = (320, 640, 1280, 1280)
self.layer_channels = layer_channels
self.middle_channel = 1280
# fill out down/up blocks and middle block, if present
if get_down_block_max(mm_state_dict) > -1:
self.down_blocks = nn.ModuleList([])
for idx, c in enumerate(layer_channels):
self.down_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding,
temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.DOWN, block_idx=idx,
attention_block_types=self.attn_block_types, ops=self.ops))
if get_up_block_max(mm_state_dict) > -1:
self.up_blocks = nn.ModuleList([])
for idx, c in enumerate(list(reversed(layer_channels))):
self.up_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding,
temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.UP, block_idx=idx,
attention_block_types=self.attn_block_types, ops=self.ops))
if has_mid_block(mm_state_dict):
self.mid_block = MotionModule(self.middle_channel, temporal_pe=self.has_position_encoding,
temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.MID,
attention_block_types=self.attn_block_types, ops=self.ops)
self.AD_video_length: int = 24
self.effect_model = 1.0
self.effect_per_block_list = None
# AnimateLCM-I2V stuff - create AdapterEmbed if keys present for it
self.img_encoder: AdapterEmbed = None
if has_img_encoder(mm_state_dict):
self.init_img_encoder()
# CameraCtrl stuff
self.camera_encoder: 'CameraPoseEncoder' = None
# PIA/FancyVideo stuff - create conv_in if keys are present for it
self.conv_in: comfy.ops.disable_weight_init.Conv2d = None
self.orig_conv_in: comfy.ops.disable_weight_init.Conv2d = None
if has_conv_in(mm_state_dict):
self.init_conv_in(mm_state_dict)
# FancyVideo fps_embedding and motion_embedding
self.fps_embedding: FancyVideoCondEmbedding = None
self.motion_embedding: FancyVideoCondEmbedding = None
if has_fps_embedding(mm_state_dict):
self.init_fps_embedding(mm_state_dict)
if has_motion_embedding(mm_state_dict):
self.init_motion_embedding(mm_state_dict)
# get_unet_func initialization
self.get_unet_func = init_kwargs.get(InitKwargs.GET_UNET_FUNC, get_unet_default)
def init_img_encoder(self):
del self.img_encoder
self.img_encoder = AdapterEmbed(cin=4, channels=self.layer_channels, nums_rb=2, ksize=1, sk=True, use_conv=False, ops=self.ops)
def set_camera_encoder(self, camera_encoder: 'CameraPoseEncoder'):
del self.camera_encoder
self.camera_encoder = camera_encoder
def init_conv_in(self, mm_state_dict: dict[str, Tensor]):
'''
Used for PIA/FancyVideo
'''
del self.conv_in
# hardcoded values, for now
# dim=2, in_channels=9, model_channels=320, kernel=3, padding=1,
# dtype=comfy.model_management.unet_dtype(), device=offload_device
in_channels = mm_state_dict["conv_in.weight"].size(1) # expected to be 9
model_channels = mm_state_dict["conv_in.weight"].size(0) # expected to be 320
# create conv_in with proper params
self.conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1,
dtype=comfy.model_management.unet_dtype(), device=comfy.model_management.unet_offload_device())
def init_fps_embedding(self, mm_state_dict: dict[str, Tensor]):
'''
Used for FancyVideo
'''
del self.fps_embedding
in_channels = mm_state_dict["fps_embedding.linear.weight"].size(1) # expected to be 320
cond_embed_dim = mm_state_dict["fps_embedding.linear.weight"].size(0) # expected to be 1280
self.fps_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim)
self.fps_embedding.apply(initialize_weights_to_zero)
def init_motion_embedding(self, mm_state_dict: dict[str, Tensor]):
'''
Used for FancyVideo
'''
del self.motion_embedding
in_channels = mm_state_dict["motion_embedding.linear.weight"].size(1) # expected to be 320
cond_embed_dim = mm_state_dict["motion_embedding.linear.weight"].size(0) # expected to be 1280
self.motion_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim)
self.motion_embedding.apply(initialize_weights_to_zero)
def get_fancyvideo_emb_patches(self, dtype, device, fps=25, motion_score=3.0):
patches = []
if self.fps_embedding is not None:
if fps is not None:
def fps_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]):
nonlocal fps
if fps is None:
return emb
fps = torch.tensor(fps).to(dtype=emb.dtype, device=emb.device)
fps = fps.expand(emb.shape[0])
fps_emb = timestep_embedding(fps, model_channels, repeat_only=False).to(dtype=emb.dtype)
fps_emb = self.fps_embedding(fps_emb)
return emb + fps_emb
patches.append(fps_emb_patch)
if self.motion_embedding is not None:
if motion_score is not None:
def motion_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]):
nonlocal motion_score
if motion_score is None:
return emb
motion_score = torch.tensor(motion_score).to(dtype=emb.dtype, device=emb.device)
motion_score = motion_score.expand(emb.shape[0])
motion_emb = timestep_embedding(motion_score, model_channels, repeat_only=False).to(dtype=emb.dtype)
motion_emb = self.motion_embedding(motion_emb)
return emb + motion_emb
patches.append(motion_emb_patch)
return patches
def get_device_debug(self):
return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device
def is_length_valid_for_encoding_max_len(self, length: int):
if self.encoding_max_len is None:
return True
return length <= self.encoding_max_len
def get_best_beta_schedule(self, log=False) -> str:
to_return = None
if self.mm_info.sd_type == ModelTypeSD.SD1_5:
if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM:
to_return = BetaSchedules.LCM # while LCM_100 is the intended schedule, I find LCM to have much less flicker
else:
to_return = BetaSchedules.SQRT_LINEAR
elif self.mm_info.sd_type == ModelTypeSD.SDXL:
if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL:
to_return = BetaSchedules.LINEAR
else:
to_return = BetaSchedules.LINEAR_ADXL
if to_return is not None:
if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}")
else:
to_return = BetaSchedules.USE_EXISTING
if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'")
return to_return
def cleanup(self):
self._reset_sub_idxs()
self._reset_scale()
self._reset_temp_vars()
if self.img_encoder is not None:
self.img_encoder.cleanup()
def inject(self, model: ModelPatcher):
unet: openaimodel.UNetModel = self.get_unet_func(self, model)
# inject input (down) blocks
# SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total
# SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total
if self.down_blocks is not None:
self._inject(unet.input_blocks, self.down_blocks)
# inject output (up) blocks
# SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total
# SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total
if self.up_blocks is not None:
self._inject(unet.output_blocks, self.up_blocks)
# inject mid block, if needed (encapsulate in list to make structure compatible)
if self.mid_block is not None:
self._inject([unet.middle_block], [self.mid_block])
del unet
def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
# Rules for injection:
# For each component list in a unet block:
# if SpatialTransformer exists in list, place next block after last occurrence
# elif ResBlock exists in list, place next block after first occurrence
# else don't place block
injection_count = 0
unet_idx = 0
# details about blocks passed in
per_block = len(mm_blocks[0].motion_modules)
injection_goal = len(mm_blocks) * per_block
# only stop injecting when modules exhausted
while injection_count < injection_goal:
# figure out which VanillaTemporalModule from mm to inject
mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
# figure out layout of unet block components
st_idx = -1 # SpatialTransformer index
res_idx = -1 # first ResBlock index
# first, figure out indeces of relevant blocks
for idx, component in enumerate(unet_blocks[unet_idx]):
if type(component) == SpatialTransformer:
st_idx = idx
elif type(component).__name__ == "ResBlock" and res_idx < 0:
res_idx = idx
# if SpatialTransformer exists, inject right after
if st_idx >= 0:
#logger.info(f"AD: injecting after ST({st_idx})")
unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# otherwise, if only ResBlock exists, inject right after
elif res_idx >= 0:
#logger.info(f"AD: injecting after Res({res_idx})")
unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# increment unet_idx
unet_idx += 1
def eject(self, model: ModelPatcher):
unet: openaimodel.UNetModel = self.get_unet_func(self, model)
# remove from input blocks (downblocks)
if hasattr(unet, "input_blocks"):
self._eject(unet.input_blocks)
# remove from output blocks (upblocks)
if hasattr(unet, "output_blocks"):
self._eject(unet.output_blocks)
# remove from middle block (encapsulate in list to make compatible)
if hasattr(unet, "middle_block"):
self._eject([unet.middle_block])
del unet
def _eject(self, unet_blocks: nn.ModuleList):
# eject all VanillaTemporalModule objects from all blocks
for block in unet_blocks:
idx_to_pop = []
for idx, component in enumerate(block):
if type(component) == VanillaTemporalModule:
idx_to_pop.append(idx)
# pop in backwards order, as to not disturb what the indeces refer to
for idx in sorted(idx_to_pop, reverse=True):
block.pop(idx)
def inject_unet_conv_in_pia_fancyvideo(self, model: BaseModel):
if self.conv_in is None:
return
# TODO: make sure works with lowvram
# expected conv_in is in the first input block, and is the first module
self.orig_conv_in = model.diffusion_model.input_blocks[0][0]
present_state_dict: dict[str, Tensor] = self.orig_conv_in.state_dict()
new_state_dict: dict[str, Tensor] = self.conv_in.state_dict()
# bias stays the same, but weight needs to inherit first in_channels from model
combined_state_dict = {}
combined_state_dict["bias"] = present_state_dict["bias"]
combined_state_dict["weight"] = torch.cat([present_state_dict["weight"],
new_state_dict["weight"][:, 4:, :, :].to(dtype=present_state_dict["weight"].dtype,
device=present_state_dict["weight"].device)], dim=1)
# create combined_conv_in with proper params
in_channels = new_state_dict["weight"].size(1) # expected to be 9
model_channels = present_state_dict["weight"].size(0) # expected to be 320
combined_conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1,
dtype=present_state_dict["weight"].dtype, device=present_state_dict["weight"].device)
combined_conv_in.load_state_dict(combined_state_dict)
# now can apply combined_conv_in to unet block
model.diffusion_model.input_blocks[0][0] = combined_conv_in
def restore_unet_conv_in_pia_fancyvideo(self, model: BaseModel):
if self.orig_conv_in is not None:
model.diffusion_model.input_blocks[0][0] = self.orig_conv_in.to(model.diffusion_model.input_blocks[0][0].weight.device)
self.orig_conv_in = None
def set_video_length(self, video_length: int, full_length: int):
self.AD_video_length = video_length
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_video_length(video_length, full_length)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_video_length(video_length, full_length)
if self.mid_block is not None:
self.mid_block.set_video_length(video_length, full_length)
def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_scale(scale, per_block_list)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_scale(scale, per_block_list)
if self.mid_block is not None:
self.mid_block.set_scale(scale, per_block_list)
def set_effect(self, multival: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
# keep track of if model is in effect
if multival is None:
self.effect_model = 1.0
else:
self.effect_model = multival
self.effect_per_block_list = per_block_list
# pass down effect multival to all blocks
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_effect(multival, per_block_list)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_effect(multival, per_block_list)
if self.mid_block is not None:
self.mid_block.set_effect(multival, per_block_list)
def is_in_effect(self):
if type(self.effect_model) == Tensor:
return True
return not math.isclose(self.effect_model, 0.0)
def set_cameractrl_effect(self, multival: Union[float, Tensor]):
# cameractrl should only impact down and up blocks
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_cameractrl_effect(multival)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_cameractrl_effect(multival)
def set_sub_idxs(self, sub_idxs: list[int]):
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_sub_idxs(sub_idxs)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_sub_idxs(sub_idxs)
if self.mid_block is not None:
self.mid_block.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_view_options(view_options)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_view_options(view_options)
if self.mid_block is not None:
self.mid_block.set_view_options(view_options)
def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
# img_features should only impact downblocks
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled)
def set_camera_features(self, camera_features: list[Tensor]):
# camera features should only impact down and up blocks
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_camera_features(camera_features=camera_features)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_camera_features(camera_features=list(reversed(camera_features)))
def _reset_temp_vars(self):
if self.down_blocks is not None:
for block in self.down_blocks:
block.reset_temp_vars()
if self.up_blocks is not None:
for block in self.up_blocks:
block.reset_temp_vars()
if self.mid_block is not None:
self.mid_block.reset_temp_vars()
def _reset_scale(self):
self.set_scale(None)
def _reset_sub_idxs(self):
self.set_sub_idxs(None)
class MotionModule(nn.Module):
def __init__(self,
in_channels,
temporal_pe=True,
temporal_pe_max_len=24,
block_type: str=BlockType.DOWN,
block_idx: int=0,
attention_block_types=("Temporal_Self", "Temporal_Self"),
ops=comfy.ops.disable_weight_init
):
super().__init__()
if block_type == BlockType.MID:
# mid blocks contain only a single VanillaTemporalModule
self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)])
else:
# down blocks contain two VanillaTemporalModules
self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList(
[
get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops),
get_motion_module(in_channels, block_type, block_idx, module_idx=1, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)
]
)
# up blocks contain one additional VanillaTemporalModule
if block_type == BlockType.UP:
self.motion_modules.append(get_motion_module(in_channels, block_type, block_idx, module_idx=2, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops))
def set_video_length(self, video_length: int, full_length: int):
for motion_module in self.motion_modules:
motion_module.set_video_length(video_length, full_length)
def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
for motion_module in self.motion_modules:
motion_module.set_scale(scale, per_block_list)
def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None):
for motion_module in self.motion_modules:
motion_module.set_effect(multival, per_block_list)
def set_cameractrl_effect(self, multival: Union[float, Tensor]):
for motion_module in self.motion_modules:
motion_module.set_cameractrl_effect(multival)
def set_sub_idxs(self, sub_idxs: list[int]):
for motion_module in self.motion_modules:
motion_module.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
for motion_module in self.motion_modules:
motion_module.set_view_options(view_options=view_options)
def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
for motion_module in self.motion_modules:
motion_module.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled)
def set_camera_features(self, camera_features: list[Tensor]):
for idx, motion_module in enumerate(self.motion_modules):
#if idx == 0:
motion_module.set_camera_features(camera_features=camera_features)
def reset_temp_vars(self):
for motion_module in self.motion_modules:
motion_module.reset_temp_vars()
def get_motion_module(in_channels, block_type: str, block_idx: int, module_idx: int,
attention_block_types: list[str],
temporal_pe, temporal_pe_max_len, ops=comfy.ops.disable_weight_init):
return VanillaTemporalModule(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx,
attention_block_types=attention_block_types,
temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
block_type: str,
block_idx: int,
module_idx: int,
num_attention_heads=8,
num_transformer_block=1,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_pe=True,
temporal_pe_max_len=24,
temporal_attention_dim_div=1,
zero_initialize=True,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
self.video_length = 16
self.full_length = 16
self.sub_idxs = None
self.view_options = None
# keep track of module's position in unet
self.block_type = block_type
self.block_idx = block_idx
self.module_idx = module_idx
self.id = PerBlockId(block_type=block_type, block_idx=block_idx, module_idx=module_idx)
# effect vars
self.effect = None
self.temp_effect_mask: Tensor = None
self.prev_input_tensor_batch = 0
# AnimateLCM-I2V vars
self.img_features: list[Tensor] = None
self.apply_ref_when_disabled = False
# CameraCtrl vars
self.camera_features: list[Tensor] = None
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels
// num_attention_heads
// temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_pe=temporal_pe,
temporal_pe_max_len=temporal_pe_max_len,
block_id=self.id,
ops=ops
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(
self.temporal_transformer.proj_out
)
def set_video_length(self, video_length: int, full_length: int):
self.video_length = video_length
self.full_length = full_length
self.temporal_transformer.set_video_length(video_length, full_length)
def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
self.temporal_transformer.set_scale(scale, per_block_list)
def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None):
if per_block_list is not None:
for per_block in per_block_list:
if self.id.matches(per_block.id) and per_block.effect is not None:
multival = get_combined_multival(multival, per_block.effect)
#logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}")
break
if type(multival) == Tensor:
self.effect = multival
elif multival is not None and math.isclose(multival, 1.0):
self.effect = None
else:
self.effect = multival
self.temp_effect_mask = None
def set_cameractrl_effect(self, multival: Union[float, Tensor, None]):
if type(multival) == Tensor:
pass
elif multival is None:
multival = 1.0
elif multival is not None and math.isclose(multival, 1.0):
multival = 1.0
self.temporal_transformer.set_cameractrl_effect(multival)
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
self.temporal_transformer.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
self.view_options = view_options
def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
del self.img_features
self.img_features = img_features
self.apply_ref_when_disabled = apply_ref_when_disabled
def set_camera_features(self, camera_features: list[Tensor]):
del self.camera_features
self.camera_features = camera_features
def reset_temp_vars(self):
self.set_effect(None)
self.set_view_options(None)
self.set_img_features(None)
self.set_camera_features(None)
self.temporal_transformer.reset_temp_vars()
def get_effect_mask(self, input_tensor: Tensor):
batch, channel, height, width = input_tensor.shape
batched_number = batch // self.video_length
full_batched_idxs = list(range(self.video_length))*batched_number
# if there is a cached temp_effect_mask and it is valid for current input, return it
if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None:
if self.sub_idxs is not None:
return self.temp_effect_mask[self.sub_idxs*batched_number]
return self.temp_effect_mask[full_batched_idxs]
# clear any existing mask
del self.temp_effect_mask
self.temp_effect_mask = None
# recalculate temp mask
self.prev_input_tensor_batch = batch
# make sure mask matches expected dimensions
mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width))
# make sure mask is as long as full_length - clone last element of list if too short
self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to(
dtype=input_tensor.dtype, device=input_tensor.device)
# return finalized mask
if self.sub_idxs is not None:
return self.temp_effect_mask[self.sub_idxs*batched_number]
return self.temp_effect_mask[full_batched_idxs]
def should_handle_img_features(self):
return self.img_features is not None and self.block_type == BlockType.DOWN and self.module_idx == 1
def should_handle_camera_features(self):
return self.camera_features is not None and self.block_type != BlockType.MID# and self.module_idx == 0
def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None):
#logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}")
mm_kwargs = None
if self.should_handle_camera_features():
mm_kwargs = {"camera_feature": self.camera_features[self.block_idx]}
if self.effect is None:
# do AnimateLCM-I2V stuff if needed
if self.should_handle_img_features():
input_tensor += self.img_features[self.block_idx]
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)
# return weighted average of input_tensor and AD output
if type(self.effect) != Tensor:
effect = self.effect
# do nothing if effect is 0
if math.isclose(effect, 0.0):
# do AnimateLCM-I2V stuff if needed
if self.apply_ref_when_disabled and self.should_handle_img_features():
input_tensor += self.img_features[self.block_idx]
return input_tensor
else:
effect = self.get_effect_mask(input_tensor)
# do AnimateLCM-I2V stuff if needed
if self.should_handle_img_features():
return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor+self.img_features[self.block_idx], encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect
return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_pe=False,
temporal_pe_max_len=24,
block_id: PerBlockId=None,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
self.id = block_id
self.video_length = 16
self.full_length = 16
self.sub_idxs: Union[list[int], None] = None
self.prev_hidden_states_batch = 0
# cameractrl stuff
self.raw_cameractrl_effect: Union[float, Tensor] = None
self.temp_cameractrl_effect: Union[float, Tensor] = None
self.prev_cameractrl_hidden_states_batch = 0
inner_dim = num_attention_heads * attention_head_dim
self.norm = ops.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = ops.Linear(in_channels, inner_dim)
self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_pe=temporal_pe,
temporal_pe_max_len=temporal_pe_max_len,
ops=ops,
)
for d in range(num_layers)
]
)
self.proj_out = ops.Linear(inner_dim, in_channels)
self.raw_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count()
self.temp_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count()
def get_attention_count(self):
if len(self.transformer_blocks) > 0:
return len(self.transformer_blocks[0].attention_blocks)
return 0
def set_video_length(self, video_length: int, full_length: int):
self.video_length = video_length
self.full_length = full_length
def set_scale_multiplier(self, idx: int, multiplier: Union[float, list[float], None]):
for block in self.transformer_blocks:
block.set_scale_multiplier(idx, multiplier)
def set_scale_mask(self, idx: int, mask: Tensor):
self.raw_scale_masks[idx] = mask
self.temp_scale_masks[idx] = None
def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
if per_block_list is not None:
for per_block in per_block_list:
if self.id.matches(per_block.id) and len(per_block.scales) > 0:
scales = []
for sub_scale in per_block.scales:
scales.append(get_combined_multival(scale, sub_scale))
#logger.info(f"scale - block_type: {self.id.block_type}, block_idx: {self.id.block_idx}, module_idx: {self.id.module_idx}")
scale = scales
break
if type(scale) == Tensor or not isinstance(scale, IterColl):
scale = [scale]
scale = extend_list_to_batch_size(scale, self.get_attention_count())
for idx, sub_scale in enumerate(scale):
if type(sub_scale) == Tensor:
self.set_scale_mask(idx, sub_scale)
self.set_scale_multiplier(idx, None)
else:
self.set_scale_mask(idx, None)
self.set_scale_multiplier(idx, sub_scale)
def set_cameractrl_effect(self, multival: Union[float, Tensor]):
self.raw_cameractrl_effect = multival
self.temp_cameractrl_effect = None
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
for block in self.transformer_blocks:
block.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
del self.temp_scale_masks
self.temp_scale_masks = [None] * self.get_attention_count()
self.prev_hidden_states_batch = 0
del self.temp_cameractrl_effect
self.temp_cameractrl_effect = None
self.prev_cameractrl_hidden_states_batch = 0
for block in self.transformer_blocks:
block.reset_temp_vars()
def get_scale_masks(self, hidden_states: Tensor) -> Union[Tensor, None]:
masks = []
prev_mask = None
prev_idx = 0
for idx in range(len(self.raw_scale_masks)):
if prev_mask is self.raw_scale_masks[idx]:
masks.append(self.temp_scale_masks[prev_idx])
else:
masks.append(self.get_scale_mask(idx=idx, hidden_states=hidden_states))
prev_idx = idx
return masks
def get_scale_mask(self, idx: int, hidden_states: Tensor) -> Union[Tensor, None]:
# if no raw mask, return None
if self.raw_scale_masks[idx] is None:
return None
shape = hidden_states.shape
batch, channel, height, width = shape
# if temp mask already calculated, return it
if self.temp_scale_masks[idx] != None:
# check if hidden_states batch matches
if batch == self.prev_hidden_states_batch:
if self.sub_idxs is not None:
return self.temp_scale_masks[idx][:, self.sub_idxs, :]
return self.temp_scale_masks[idx]
# if does not match, reset cached temp_scale_mask and recalculate it
self.temp_scale_masks[idx] = None
# otherwise, calculate temp mask
self.prev_hidden_states_batch = batch
mask = prepare_mask_batch(self.raw_scale_masks[idx], shape=(self.full_length, 1, height, width))
mask = repeat_to_batch_size(mask, self.full_length)
# if mask not the same amount length as full length, make it match
if self.full_length != mask.shape[0]:
mask = broadcast_image_to(mask, self.full_length, 1)
# reshape mask to attention K shape (h*w, latent_count, 1)
batch, channel, height, width = mask.shape
# first, perform same operations as on hidden_states,
# turning (b, c, h, w) -> (b, h*w, c)
mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
# then, make it the same shape as attention's k, (h*w, b, c)
mask = mask.permute(1, 0, 2)
# make masks match the expected length of h*w
batched_number = shape[0] // self.video_length
if batched_number > 1:
mask = torch.cat([mask] * batched_number, dim=0)
# cache mask and set to proper device
self.temp_scale_masks[idx] = mask
# move temp_scale_mask to proper dtype + device
self.temp_scale_masks[idx] = self.temp_scale_masks[idx].to(dtype=hidden_states.dtype, device=hidden_states.device)
# return subset of masks, if needed
if self.sub_idxs is not None:
return self.temp_scale_masks[idx][:, self.sub_idxs, :]
return self.temp_scale_masks[idx]
def get_cameractrl_effect(self, hidden_states: Tensor) -> Union[float, Tensor, None]:
# if no raw camera_Ctrl, return None
if self.raw_cameractrl_effect is None:
return 1.0
# if raw_cameractrl is not a Tensor, return it (should be a float)
if type(self.raw_cameractrl_effect) != Tensor:
return self.raw_cameractrl_effect
shape = hidden_states.shape
batch, channel, height, width = shape
# if temp_cameractrl already calculated, return it
if self.temp_cameractrl_effect != None:
# check if hidden_states batch matches
if batch == self.prev_cameractrl_hidden_states_batch:
if self.sub_idxs is not None:
return self.temp_cameractrl_effect[:, self.sub_idxs, :]
return self.temp_cameractrl_effect
# if does not match, reset cached temp_cameractrl and recalculate it
del self.temp_cameractrl_effect
self.temp_cameractrl_effect = None
# otherwise, calculate temp_cameractrl
self.prev_cameractrl_hidden_states_batch = batch
mask = prepare_mask_batch(self.raw_cameractrl_effect, shape=(self.full_length, 1, height, width))
mask = repeat_to_batch_size(mask, self.full_length)
# if mask not the same amount length as full length, make it match
if self.full_length != mask.shape[0]:
mask = broadcast_image_to(mask, self.full_length, 1)
# reshape mask to attention K shape (h*w, latent_count, 1)
batch, channel, height, width = mask.shape
# first, perform same operations as on hidden_states,
# turning (b, c, h, w) -> (b, h*w, c)
mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
# then, make it the same shape as attention's k, (h*w, b, c)
mask = mask.permute(1, 0, 2)
# make masks match the expected length of h*w
batched_number = shape[0] // self.video_length
if batched_number > 1:
mask = torch.cat([mask] * batched_number, dim=0)
# cache mask and set to proper device
self.temp_cameractrl_effect = mask
# move temp_cameractrl to proper dtype + device
self.temp_cameractrl_effect = self.temp_cameractrl_effect.to(dtype=hidden_states.dtype, device=hidden_states.device)
# return subset of masks, if needed
if self.sub_idxs is not None:
return self.temp_cameractrl_effect[:, self.sub_idxs, :]
return self.temp_cameractrl_effect
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None, mm_kwargs: dict[str]=None, transformer_options=None):
batch, channel, height, width = hidden_states.shape
residual = hidden_states
scale_masks = self.get_scale_masks(hidden_states)
cameractrl_effect = self.get_cameractrl_effect(hidden_states)
# add some casts for fp8 purposes - does not affect speed otherwise
hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
video_length=self.video_length,
scale_masks=scale_masks,
cameractrl_effect=cameractrl_effect,
view_options=view_options,
mm_kwargs=mm_kwargs,
transformer_options=transformer_options,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_pe=False,
temporal_pe_max_len=24,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
attention_blocks: Iterable[VersatileAttention] = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
VersatileAttention(
attention_mode=block_name.split("_")[0],
context_dim=cross_attention_dim # called context_dim for ComfyUI impl
if block_name.endswith("_Cross")
else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
#bias=attention_bias, # remove for Comfy CrossAttention
#upcast_attention=upcast_attention, # remove for Comfy CrossAttention
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_pe=temporal_pe,
temporal_pe_max_len=temporal_pe_max_len,
ops=ops,
)
)
norms.append(ops.LayerNorm(dim))
attention_blocks[0].camera_feature_enabled = True
self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
self.ff_norm = ops.LayerNorm(dim)
def set_scale_multiplier(self, idx: int, multiplier: Union[float, None]):
self.attention_blocks[idx].set_scale_multiplier(multiplier)
def set_sub_idxs(self, sub_idxs: list[int]):
for block in self.attention_blocks:
block.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
for block in self.attention_blocks:
block.reset_temp_vars()
def forward(
self,
hidden_states: Tensor,
encoder_hidden_states: Tensor=None,
attention_mask: Tensor=None,
video_length: int=None,
scale_masks: list[Tensor]=None,
cameractrl_effect: Union[float, Tensor] = None,
view_options: Union[ContextOptions, None]=None,
mm_kwargs: dict[str]=None,
transformer_options: dict[str]=None,
):
if scale_masks is None:
scale_masks = [None] * len(self.attention_blocks)
# make view_options None if context_length > video_length, or if equal and equal not allowed
if view_options:
if view_options.context_length > video_length:
view_options = None
elif view_options.context_length == video_length and not view_options.use_on_equal_length:
view_options = None
if not view_options:
for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks):
norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if attention_block.is_cross_attention
else None,
attention_mask=attention_mask,
video_length=video_length,
scale_mask=scale_mask,
cameractrl_effect=cameractrl_effect,
mm_kwargs=mm_kwargs,
transformer_options=transformer_options,
) + hidden_states
)
else:
# views idea gotten from diffusers AnimateDiff FreeNoise implementation:
# https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py
# apply sliding context windows (views)
views = get_context_windows(num_frames=video_length, opts=view_options)
hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length)
value_final = torch.zeros_like(hidden_states)
count_final = torch.zeros_like(hidden_states)
batched_conds = hidden_states.size(1) // video_length
# store original camera_feature, if present
has_camera_feature = False
if mm_kwargs is not None:
has_camera_feature = True
orig_camera_feature = mm_kwargs["camera_feature"]
# perform view options
for sub_idxs in views:
sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c")
if has_camera_feature:
mm_kwargs["camera_feature"] = orig_camera_feature[:, sub_idxs, :]
for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks):
norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype)
sub_hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too?
if attention_block.is_cross_attention
else None,
attention_mask=attention_mask,
video_length=len(sub_idxs),
scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask,
cameractrl_effect=cameractrl_effect[:, sub_idxs, :] if type(cameractrl_effect) == Tensor else cameractrl_effect,
mm_kwargs=mm_kwargs,
transformer_options=transformer_options,
) + sub_hidden_states
)
sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs))
weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds
weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
value_final[:, sub_idxs] += sub_hidden_states * weights_tensor
count_final[:, sub_idxs] += weights_tensor
# restore original camera_feature
if has_camera_feature:
mm_kwargs["camera_feature"] = orig_camera_feature
del orig_camera_feature
# get weighted average of sub_hidden_states
hidden_states = value_final / count_final
hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c")
del value_final
del count_final
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.0, max_len=24):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
)
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
self.sub_idxs = None
self.pe: Tensor
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
def forward(self, x: Tensor, mm_kwargs: dict[str]={}, transformer_options: dict[str]=None):
#if self.sub_idxs is not None:
# x = x + self.pe[:, self.sub_idxs]
#else:
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)
class VersatileAttention(CrossAttentionMM):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_pe=False,
temporal_pe_max_len=24,
ops=comfy.ops.disable_weight_init,
*args,
**kwargs,
):
super().__init__(operations=ops, *args, **kwargs)
assert attention_mode == "Temporal"
self.attention_mode = attention_mode
self.is_cross_attention = kwargs["context_dim"] is not None
self.query_dim: int = kwargs["query_dim"]
self.qkv_merge: comfy.ops.disable_weight_init.Linear = None
self.camera_feature_enabled = False
self.pos_encoder = (
PositionalEncoding(
kwargs["query_dim"],
dropout=0.0,
max_len=temporal_pe_max_len,
)
if (temporal_pe and attention_mode == "Temporal")
else None
)
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_scale_multiplier(self, multiplier: Union[float, None]):
if multiplier is None or math.isclose(multiplier, 1.0):
self.scale = 1.0
else:
self.scale = multiplier
def set_sub_idxs(self, sub_idxs: list[int]):
if self.pos_encoder != None:
self.pos_encoder.set_sub_idxs(sub_idxs)
def init_qkv_merge(self, ops=comfy.ops.disable_weight_init):
self.qkv_merge = zero_module(ops.Linear(in_features=self.query_dim, out_features=self.query_dim))
def reset_temp_vars(self):
self.reset_attention_type()
def forward(
self,
hidden_states: Tensor,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
scale_mask=None,
cameractrl_effect: Union[float, Tensor] = 1.0,
mm_kwargs: dict[str]={},
transformer_options: dict[str]=None,
):
if self.attention_mode != "Temporal":
raise NotImplementedError
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states, mm_kwargs, transformer_options).to(hidden_states.dtype)
encoder_hidden_states = (
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
if encoder_hidden_states is not None
else encoder_hidden_states
)
if self.camera_feature_enabled and self.qkv_merge is not None and mm_kwargs is not None and "camera_feature" in mm_kwargs:
camera_feature: Tensor = mm_kwargs["camera_feature"]
hidden_states = (self.qkv_merge(hidden_states + camera_feature) + hidden_states) * cameractrl_effect + hidden_states * (1. - cameractrl_effect)
hidden_states = super().forward(
hidden_states,
encoder_hidden_states,
value=None,
mask=attention_mask,
scale_mask=scale_mask,
mm_kwargs=mm_kwargs,
transformer_options=transformer_options,
)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
############################################################################
### EncoderOnly Version
############################################################################
class EncoderOnlyAnimateDiffModel(AnimateDiffModel):
def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo):
super().__init__(mm_state_dict=mm_state_dict, mm_info=mm_info)
self.down_blocks: list[EncoderOnlyMotionModule] = nn.ModuleList([])
self.up_blocks = None
self.mid_block = None
# fill out down/up blocks and middle block, if present
for idx, c in enumerate(self.layer_channels):
self.down_blocks.append(EncoderOnlyMotionModule(c, block_type=BlockType.DOWN, block_idx=idx, ops=self.ops))
def _eject(self, unet_blocks: nn.ModuleList):
# eject all EncoderOnlyTemporalModule objects from all blocks
for block in unet_blocks:
idx_to_pop = []
for idx, component in enumerate(block):
if type(component) == EncoderOnlyTemporalModule:
idx_to_pop.append(idx)
# pop in backwards order, as to not disturb what the indeces refer to
for idx in sorted(idx_to_pop, reverse=True):
block.pop(idx)
class EncoderOnlyMotionModule(MotionModule):
'''
MotionModule that will store EncoderOnlyTemporalModule objects instead of VanillaTemporalModules
'''
def __init__(
self,
in_channels,
block_type: str=BlockType.DOWN,
block_idx: int=0,
ops=comfy.ops.disable_weight_init
):
super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, ops=ops)
if block_type == BlockType.MID:
# mid blocks contain only a single VanillaTemporalModule
self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList([EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops)])
else:
# down blocks contain two VanillaTemporalModules
self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList(
[
EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops),
EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=1, ops=ops)
]
)
# up blocks contain one additional VanillaTemporalModule
if block_type == BlockType.UP:
self.motion_modules.append(EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=2, ops=ops))
class EncoderOnlyTemporalModule(VanillaTemporalModule):
'''
VanillaTemporalModule that will only add img_features to input_tensor while respecting effect_multival
'''
def __init__(
self,
in_channels,
block_type: str,
block_idx: int,
module_idx: int,
ops=comfy.ops.disable_weight_init,
):
super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, zero_initialize=False, ops=ops)
# make temporal_transformer a dummy class that does nothing, but will allow inherited VanillaTemporalModule code to work
self.temporal_transformer = DummyNNModule()
@classmethod
def create(cls, in_channels, block_type: str, block_idx: int, module_idx: int, ops=comfy.ops.disable_weight_init):
return cls(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, ops=ops)
def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None):
if self.effect is None:
# do AnimateLCM-I2V stuff if needed
if self.should_handle_img_features():
input_tensor += self.img_features[self.block_idx]
return input_tensor
# handle effect
if type(self.effect) != Tensor:
effect = self.effect
# do nothing if effect is 0
if math.isclose(effect, 0.0):
# do AnimateLCM-I2V stuff if needed
if self.apply_ref_when_disabled and self.should_handle_img_features():
input_tensor += self.img_features[self.block_idx]
return input_tensor
else:
effect = self.get_effect_mask(input_tensor)
if self.should_handle_img_features():
return input_tensor*(1.0-effect) + (input_tensor+self.img_features[self.block_idx])*effect
return input_tensor # since no img_features to apply, no need for weighted average
############################################################################