|
---
|
|
base_model: vikhyatk/moondream2
|
|
library_name: transformers.js
|
|
license: apache-2.0
|
|
pipeline_tag: image-text-to-text
|
|
---
|
|
|
|
https://huggingface.co/vikhyatk/moondream2 with ONNX weights to be compatible with Transformers.js.
|
|
|
|
|
|
## Usage (Transformers.js)
|
|
|
|
> [!IMPORTANT]
|
|
> NOTE: Moondream support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source.
|
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using:
|
|
```bash
|
|
npm install xenova/transformers.js#v3
|
|
```
|
|
|
|
**Example:**
|
|
```js
|
|
import { AutoProcessor, AutoTokenizer, Moondream1ForConditionalGeneration, RawImage } from '@xenova/transformers';
|
|
|
|
// Load processor, tokenizer and model
|
|
const model_id = 'Xenova/moondream2';
|
|
const processor = await AutoProcessor.from_pretrained(model_id);
|
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
|
const model = await Moondream1ForConditionalGeneration.from_pretrained(model_id, {
|
|
dtype: {
|
|
embed_tokens: 'fp16', // or 'fp32'
|
|
vision_encoder: 'fp16', // or 'q8'
|
|
decoder_model_merged: 'q4', // or 'q4f16' or 'q8'
|
|
},
|
|
device: 'webgpu',
|
|
});
|
|
|
|
// Prepare text inputs
|
|
const prompt = 'Describe this image.';
|
|
const text = `<image>\n\nQuestion: ${prompt}\n\nAnswer:`;
|
|
const text_inputs = tokenizer(text);
|
|
|
|
// Prepare vision inputs
|
|
const url = 'https://huggingface.co/vikhyatk/moondream1/resolve/main/assets/demo-1.jpg';
|
|
const image = await RawImage.fromURL(url);
|
|
const vision_inputs = await processor(image);
|
|
|
|
// Generate response
|
|
const output = await model.generate({
|
|
...text_inputs,
|
|
...vision_inputs,
|
|
do_sample: false,
|
|
max_new_tokens: 64,
|
|
});
|
|
const decoded = tokenizer.batch_decode(output, { skip_special_tokens: false });
|
|
console.log(decoded);
|
|
// [
|
|
// '<|endoftext|><image>\n\n' +
|
|
// 'Question: Describe this image.\n\n' +
|
|
// 'Answer: A hand is holding a white book titled "The Little Book of Deep Learning" against a backdrop of a balcony with a railing and a view of a building and trees.<|endoftext|>'
|
|
// ]
|
|
```
|
|
|
|
We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/experimental-moondream-webgpu
|
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9q6LTQIYiI3qKrKfAb4D8.mp4"></video>
|
|
|
|
---
|
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |