belajar_huggingface / README.md
jonathantho's picture
End of training
7b29a96 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: belajar_huggingface
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:10000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5
          - name: Precision
            type: precision
            value: 0.5110750617136487
          - name: Recall
            type: recall
            value: 0.5
          - name: F1
            type: f1
            value: 0.49895214791397935

belajar_huggingface

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3425
  • Accuracy: 0.5
  • Precision: 0.5111
  • Recall: 0.5
  • F1: 0.4990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 40 1.7396 0.2938 0.2269 0.2938 0.2006
No log 2.0 80 1.7746 0.3812 0.4438 0.3812 0.3612
No log 3.0 120 1.4630 0.3875 0.3634 0.3875 0.3280
No log 4.0 160 1.4815 0.3812 0.3819 0.3812 0.3604
No log 5.0 200 1.2788 0.475 0.5219 0.475 0.4553
No log 6.0 240 1.2866 0.5312 0.5366 0.5312 0.5311
No log 7.0 280 1.4916 0.4313 0.4654 0.4313 0.4053
No log 8.0 320 1.3428 0.5125 0.5307 0.5125 0.5158
No log 9.0 360 1.4789 0.4188 0.4177 0.4188 0.4054
No log 10.0 400 1.6132 0.4375 0.4619 0.4375 0.4323
No log 11.0 440 1.5168 0.4875 0.5142 0.4875 0.4911
No log 12.0 480 1.4779 0.5312 0.5566 0.5312 0.5323
0.9086 13.0 520 1.5962 0.4813 0.4911 0.4813 0.4798
0.9086 14.0 560 1.5281 0.5188 0.5613 0.5188 0.5220
0.9086 15.0 600 1.5682 0.525 0.5536 0.525 0.5283

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1