metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: belajar_huggingface
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train[:10000]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5
- name: Precision
type: precision
value: 0.5110750617136487
- name: Recall
type: recall
value: 0.5
- name: F1
type: f1
value: 0.49895214791397935
belajar_huggingface
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3425
- Accuracy: 0.5
- Precision: 0.5111
- Recall: 0.5
- F1: 0.4990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 40 | 1.7396 | 0.2938 | 0.2269 | 0.2938 | 0.2006 |
No log | 2.0 | 80 | 1.7746 | 0.3812 | 0.4438 | 0.3812 | 0.3612 |
No log | 3.0 | 120 | 1.4630 | 0.3875 | 0.3634 | 0.3875 | 0.3280 |
No log | 4.0 | 160 | 1.4815 | 0.3812 | 0.3819 | 0.3812 | 0.3604 |
No log | 5.0 | 200 | 1.2788 | 0.475 | 0.5219 | 0.475 | 0.4553 |
No log | 6.0 | 240 | 1.2866 | 0.5312 | 0.5366 | 0.5312 | 0.5311 |
No log | 7.0 | 280 | 1.4916 | 0.4313 | 0.4654 | 0.4313 | 0.4053 |
No log | 8.0 | 320 | 1.3428 | 0.5125 | 0.5307 | 0.5125 | 0.5158 |
No log | 9.0 | 360 | 1.4789 | 0.4188 | 0.4177 | 0.4188 | 0.4054 |
No log | 10.0 | 400 | 1.6132 | 0.4375 | 0.4619 | 0.4375 | 0.4323 |
No log | 11.0 | 440 | 1.5168 | 0.4875 | 0.5142 | 0.4875 | 0.4911 |
No log | 12.0 | 480 | 1.4779 | 0.5312 | 0.5566 | 0.5312 | 0.5323 |
0.9086 | 13.0 | 520 | 1.5962 | 0.4813 | 0.4911 | 0.4813 | 0.4798 |
0.9086 | 14.0 | 560 | 1.5281 | 0.5188 | 0.5613 | 0.5188 | 0.5220 |
0.9086 | 15.0 | 600 | 1.5682 | 0.525 | 0.5536 | 0.525 | 0.5283 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1