|
---
|
|
license: apache-2.0
|
|
base_model: google/vit-base-patch16-224-in21k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: belajar_huggingface
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: train[:10000]
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.5
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.5110750617136487
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.5
|
|
- name: F1
|
|
type: f1
|
|
value: 0.49895214791397935
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# belajar_huggingface
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.3425
|
|
- Accuracy: 0.5
|
|
- Precision: 0.5111
|
|
- Recall: 0.5
|
|
- F1: 0.4990
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.00025
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 15
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
|
| No log | 1.0 | 40 | 1.7396 | 0.2938 | 0.2269 | 0.2938 | 0.2006 |
|
|
| No log | 2.0 | 80 | 1.7746 | 0.3812 | 0.4438 | 0.3812 | 0.3612 |
|
|
| No log | 3.0 | 120 | 1.4630 | 0.3875 | 0.3634 | 0.3875 | 0.3280 |
|
|
| No log | 4.0 | 160 | 1.4815 | 0.3812 | 0.3819 | 0.3812 | 0.3604 |
|
|
| No log | 5.0 | 200 | 1.2788 | 0.475 | 0.5219 | 0.475 | 0.4553 |
|
|
| No log | 6.0 | 240 | 1.2866 | 0.5312 | 0.5366 | 0.5312 | 0.5311 |
|
|
| No log | 7.0 | 280 | 1.4916 | 0.4313 | 0.4654 | 0.4313 | 0.4053 |
|
|
| No log | 8.0 | 320 | 1.3428 | 0.5125 | 0.5307 | 0.5125 | 0.5158 |
|
|
| No log | 9.0 | 360 | 1.4789 | 0.4188 | 0.4177 | 0.4188 | 0.4054 |
|
|
| No log | 10.0 | 400 | 1.6132 | 0.4375 | 0.4619 | 0.4375 | 0.4323 |
|
|
| No log | 11.0 | 440 | 1.5168 | 0.4875 | 0.5142 | 0.4875 | 0.4911 |
|
|
| No log | 12.0 | 480 | 1.4779 | 0.5312 | 0.5566 | 0.5312 | 0.5323 |
|
|
| 0.9086 | 13.0 | 520 | 1.5962 | 0.4813 | 0.4911 | 0.4813 | 0.4798 |
|
|
| 0.9086 | 14.0 | 560 | 1.5281 | 0.5188 | 0.5613 | 0.5188 | 0.5220 |
|
|
| 0.9086 | 15.0 | 600 | 1.5682 | 0.525 | 0.5536 | 0.525 | 0.5283 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|